Sensors
 for Automation

ALSEN 1.08

Sensors for Automation

 Content| 0 | Introduction |
| :--- | :--- |
| 0.0.3 | Basics |
| 0.0.4 | Type Code |
| 0.0.5 | Connecting Variables |
| 0.0.6 | Connection Diagrams DC 3- and 4-poles |
| 0.0.7 | Connection Diagrams DC and AC 2-poles |
| 0.0.8 | Connection Diagrams DC 3-poles Push-Pull |
| 0.0.9 | Materials and Leads |
| | |
| | |
| 1 | Inductive Proximity Switches |
| 1.0.1 | Tasks, Mode of Operation, Requirement Profiles |
| 1.0.2 | Switching Behaviour |
| 1.0.3 | Switching Frequency, External Influences |
| 1.0.4 | Mounting Requirements |
| 1.1 | All Metal Standard, DC 3- and 4-poles |
| 1.1.0.1 | Characteristics, Overview |
| 1.1.1.1 | Series IAD/AHM-8eg |
| 1.1.2.1 | Series IAD/AHM-12mg |
| 1.1.3.1 | Series IAD/AHM-18eg, -mg |
| 1.1.4.1 | Series IAD/AHM-30mg |
| 1.1.5.1 | Series IAD/AHM-40aq, -40fq, -80aq, -80fq |
| 1.2 | All Metal Automotive, DC 3- and 4-poles |
| 1.2.0.1 | Characteristics, Overview |
| 1.2.1.1 | Serie IAD/AHMS-8eg, -12mg, -18mg, -30mg |
| 1.2.2.1 | Serie IAD/AHMS-40aq, -40fq, -80aq, -80fq |
| 1.3 | Ferrous DC 3- and 4-poles |
| 1.3.0.1 | Characteristics, Overview |
| 1.3.1.1 | Series ID-8eg, -8mq |
| 1.3.2.1 | Series IAD-12eg, -12fg |
| 1.3.2.3 | Series IAD-12mg |
| 1.3.2.5 | Series IAD-12mg |
| 1.3.2.7 | Series IAD-12mg |
| 1.3.2.9 | Series IAD-12mg |
| 1.3.3.1 | Series IAD-18fg, -18mg |
| 1.3.3.3 | Series IAD-18mg |
| 1.3.3.5 | Series ID-18mg |
| 1.3.3.7 | Series IAD-18mg |
| 1.3.4.1 | Series IAD-30fg, -30mg |
| 1.3.4.3 | Series IAD-30mg |
| 1.3.4.5 | Series IAD-30sg |
| 1.3.5.1 | Series IAD-34aq, -34zq |
| 1.3.6.1 | Series IAD-40aq, -40fq |
| 1.3.6.3 | Series IAD-40fv |
| 1.3.7.1 | Series ID-80aq, -80fq |
| 1.3.7.3 | Series IAD-80fr |
| 1.4 | Ferrous AC and DC 2-poles |
| 1.4.0.1 | Characteristics, Overview |
| 1.4.1.1 | Series IAB-8eg, -12mg |
| 1.4.2.1 | Series IAB-18mg, -30mg |
| 1.4.3.1 | Series IAB-40fq, -40fv, -80fq |
| 1.4.4.1 | Series IAW-18mg, ISW-18mg, ISW-30mg |
| 1.6 | Double and Multiple |
| 1.6.0.1 | Characteristics, Overview |
| 1.6.1.1 | Series IAD2/H-18zr |
| | |

2.0.1
2.0.2
2.1
2.1.0.1
2.1.1.1
2.1.1.3
2.1.1.5
2.1.1.7
2.1.1.9
2.1.1.11 Series HAD-11ms, -12aq, -12er
2.1.1.13 Series HAD-12er, -12mg
2.1.1.15 Series HAD-12mg, -12ms
2.1.1.17 Series HAD-12ms, -14eg, -14er
2.1.1.19 Series HAD-16ss, $-18 \mathrm{eg},-18 \mathrm{mg}$
2.1.1.21 Series HAD-18mg, -18sg
2.1.1.23 Series HAD-18ss, MAD-12aq
2.2
2.2.0.1
2.2.1.1 Series IAD/AHM-8eg
2.2.2.1 Series IAD/AHM-12mg
2.3
2.3.0.1 Characteristics, Overview
2.3.1.1 Series HDD-16ms, -12aq
2.3.2.1 Series MDD-12aq
2.4 Pulse Sensors, Heat-Resistant
2.4.0.1 Characteristics, Overview
2.4.1.1 Series HTD-11ms, HAD-18mg

5 Safety Elements

5.0.1 Terminology
5.1 SIDENT Safety Switch
5.1.0.1 Function
5.1.1.1 Series SIDENT III
5.1.2.1 Series SIDENT IV
5.1.2.3 Series SIDENT IV
5.1.3.1 Series SIDENT / B Actuating Elements
5.2
5.2.0.1 Overview
5.2.1.1 Series SIDENT IV for Roller- / Lift Gates and Windows
5.2.2.1 Series SIDENT / B Actuating Elements
5.3 SIDENT Safety Components
5.3.1.1 Safety Door Handles with SIDENT

11 Specific Sensors
$11.2 \quad$ Foil Detection Sensors
11.2.0.1 Characteristics, Overview
11.2.1.1 Series IED/AHM-30mg, -40aq, -80aq
11.3 Seam Detection
11.3.0.1 Characteristics, Overview
11.3.1.1 Series IND/A-45as, -33as
11.8 Valve Position Sensor
11.8.0.1 Characteristicis, Overview
11.8.1.1 Series IVA

12 Accessories for Sensors

12.1 Connectors, Leads, Adaptors, Distributors
12.1.0.1 Overview and Type Code
12.1.1.1 Socket - Lead
12.1.2.1 Field Attachable Sockets
12.1.2.3 Field Attachable Plugs, Adaptors
12.1.3.1 Unshielded Leads
12.1.4.1 Socket - Lead - Plug
12.1.5.1 Adaptors
12.1.6.1 2 Sockets - 2 Leads - 1 Plug
12.1.7.1 Distributors

Principle and Function

Sensors are physical-electrical converters, whose task is to acquire measured variables such as distance, pressure and temperature, speed and acceleration and to convert these into an electrical variable.
Sensors in machines and plants are usually position-, distance- or motion sensors. Their task is to take up the current values of the physical measured variables and to convert these into electrically measured variables for the controller.

The principal internal structure of a sensor shows the following schematic:

- An actuating element B influences the sensor element F when entering the sensitive zone Z of the sensor,
- the sensor element F generates or alters an electrical signal (current, voltage, frequency or phase) as a function of the physical measured variable,
- a coupling element A transforms the usually weak electrical measuring signal into the desired signal form, e. g. in a switching-, analog or digital signal,
- a switching- or output amplifier generates a high performance signal which is suitable to bridge large distances between sensor and controller without of information.
Our sensors are based on the most modern circuit concepts and technologies and show the following characteristics:
- contactless, feedback-free detection,
- high resolution and sensitivity,
- short transformation time,
- large ambient temperature range,
- free of wear and therefore long operating life
- fully encapsulated and poured,
- to a large extent insensitive against chemicals and other environmental influences,
- contactless electronic output,
- high resistance to ageing,
- small design,
- low failure rate.

Characteristics and Types

Proximity sensors work non-contacting and contactless. They are to a large extent insensitive against environmental influences and do not contain any parts which are subject to wear. We distinguish between switches and analog sensors.
They are employed in those areas where the customer has high requirements with regard to operating life, reliability, switching point accuracy, operating time and -speed.
The physical operating mode can be distinguished as follows:

- Acoustic proximity sensors, suitable for medium to large distances, with medium operating times,
- Inductive proximity sensors for the detection of ferrous- and nonferrous metals; the special designs are pressure-; magnetic fieldresistant, surface switches and non-ferrous metal switches,
- Capacitive proximty sensors for the detection of metals and non-metals,
- Optical proximity sensors for large distances according to the barrier and reflection principle,
- Magnetic field proximity sensors for a high geometrical resolution and high operating frequencies.
The following designs are available:
- Cylindrical designs with or without thread,
- Rectangular designs,
- Surface-, barrier-type or slot designs.

The following versions are available:

- DC-voltage versions according to NAMUR, with 2, 3, 4 or 5 terminals,
- AC-voltage versions with 2 terminals,
- All voltage versions with 2 terminals.

The DC voltage versions of the proximity sensors are mainly used for the connection to programmable controllers such as the SECONIX. The AC- and all-voltage versions can only be employed with conventional applications in connection with relays or magnetic switches.

[^0]
Connecting Variables

Supply Voltages and -Frequencies

Sensors are preferably operated at DC-voltage 24 V . They are, however, designed in such a way that they can be operated within a large connecting voltage range, ranging from $10 \mathrm{~V} D C$ to 30 V DC , e.g. at 12,18 or at 24 V DC.

Thus the remaining ripple σ, which is the content of a possibly superimposed alternating voltage, is measured peak to peak and may not exceed 15% of the measured effective value Uv of the supply voltage (according to DIN 41 755).

The design of the power supply unit for the voltage supply of the sensors must be stable enough to retain the voltage fluctuations us of the effective value of the supply network within a threshold of $\pm 15 \%$. These fluctuations develop due to a fluctuation of the supply network and when operating the sensors.

When selecting the power supply units it also has to be considered that transients from the power system (low- and high-frequency pulses of a high voltage) are reliably suppressed. This can be accomplished best with suitable filters and HF-capacitors as well as via peak voltage limiters at the output of the power supply unit.

Sensors are used less frequently for AC- and/or DC-voltage (AC/DC). If used as so-called all-voltage sensors, they can be operated in a large range from 20 to 250 V with an alternating voltage from 50 to $\mathbf{6 0 ~ H z}$ or with DC-voltage. In case of operation with alternating voltage the operating frequency (maximum operating frequency) is limited, however, to the frequency of the supply voltage. The time delay before availability is then augmented to over 20 ms .
When all-voltage sensors are operated with DC-voltage the above applies with regard to ripple voltage and voltage fluctuations.

Currents

The current consumption of a sensor has two portions: The idleor no-load current Ir flows as long as no load resistance is connected. Its task is the supply of the sensor electronics. When connecting the load resistance / the load resistances, an operating current additionally develops during operation of the output / the outputs. The sum of idle current and operating current results in the total current consumption.

Each exit is protected against overloading by a clocking short-circuit- protection, which becomes effective from a maximum load current Ilmax. For the verification of the short-circuit-resistance the standard EN 60947-5-2 requires for the type examination a power supply unit, which is capable to quickly supply a current > 100 A .
A voltage drop over the current-carrying output, whose extent depends to a certain degree on the magnitude of the load current, develops due to the short-circuit protection, pole protection, and a residual voltage.
In the case of 3- and 4-pole sensors a very small residual current of a few $\mu \mathrm{A}$ develops due to the load arising when the output is closed. In the Technical Data the residual current is usually not indicated because the voltage drop at the load resistance caused by it is negligibly small. The idle current of 2-pole sensors flows over the load and generates a voltage drop, which is to be considered when connecting the sensor.

Switching Capacity

The switching capacity is divided into utilization categories according to the standard EN 60947-5-2.

Supply	Category	Typical applications
AC- voltage	AC -12	Control of resistive loads and semiconductor loads with isolation via opto-coupler
	AC-140	Control of small electromagnetic loads with holding current ≤ 0.2 A; e.g. auxiliary contact
DC- voltage	DC-12	Control of resistive loads and semiconductor loads with isolation via opto-coupler
	DC-13	Control of electromagnets

Sensors
Connection Diagrams DC 3- and 4-Poles

DC 3- and 4-poles plus-switching (p)

O plus-switching
NOp

NC plus-switching
NCp

NO plus-switching

NO and NC plus-switching $N O p+N C p$

DC 3- and 4-poles minus-switching (n)

NO minus-switching
NOn

NC minus-switching NCn

NO minus-switching NOn

NC minus-switching NCn

NO and NC minus-switching $\mathrm{NOn}+\mathrm{NCn}$

Connector

> (1)

(2)

(3)

(4)

(5)

Euro plug M12
(11)

(12)

(13)

(14)

(15)

Outgoing Lead

(6)

(8)

(9)

(10)

Sensors
Connection Diagrams DC and AC 2-Poles

	Connector	Outgoing Lead
DC 2-poles polarized NO plus-switching NOp NC plus-switching NCp	(21) Euro plug M12 22	23 24
DC 2-poles non-polarized NO non-polarized NO NC non-polarized NC	26 (27) (+) Euro plug M12	28 29
AC/DC 2-poles all-insualted NO NC	(31) 32	33 34
AC/DC 2-poles with protective wire NO NC	35 36	37 38
Colours of lines acc. to DIN IEC 60757	BN BK brown black	BU WH GN YE blue white green yellow

O.0.7 $\overline{\text { © by Klaschka } \mathrm{GmbH} \& \mathrm{Co.} \mathrm{KG} \cdot \mathrm{D}-75233 \text { Tiefenbronn } \cdot \text { Fon }+497234790 \cdot \text { Fax }+49723479112 \cdot \text { info@klaschka.de } \cdot \text { www.klaschka.de }}$

Sensors
Connection Diagrams DC 3-Poles Push-Pull

Sensors

Materials and Leads

Metal

employed as material for housings and mounting parts
AI Aluminium wrought alloy
Material for housings and mounting. Suitable for metal-cutting forming. Transformable and cold-flow pressable. Small specific weight. Colour anodization. It shall be considered that the anodized coat has an insulating effect.

AI-DG

Aluminium alloyage for die casting
Aluminium die cast alloy. Material with low specific weight. Anodizable. The anodized coat has an insulating coat.

CuZn Brass

Housing material for cut round housings with and without thread. The surface is usually nickel-plated

X...

Stainless high-grade steel

A magnetic, high-grade steel with a medium or high cutting property, and with a medium coefficient of thermal expansion of ca. $16 \mathrm{ppm} / \mathrm{K}$, mainly used for cut round housings, but also for formed rectangular or cuboid housings.

X5CrNi 18-10 For application in automotive, chemical, petrochemical and food industry. Transformable, compressable, forgeable, polishingable.

X5CrNiMo 17-12-2 For application in oil and food industry. Transformable, forgeable, polishingable.
X2CrNiMo 17-12-2 For application in chemical, oil, food, medical and pharamceutic industry. Transformable, forgeable and compressable, polishable.

X6CrNiMoTi 17-12-2 For application in apparatus engineering and piping construction, in chemical and food industry, in medical and pharmaceutic industry as well as in ship building.

Die-cast zinc
Alloy of zinc, aluminium and copper. High dimensional accuracy. Usually with surface refinement, solderable.

Technical Ceramics

employed as material for housings and substrates

Al2O3

Aluminiumoxide
Material for substrates, protective pipes, insulating parts. High stability and hardness, further application termperature range, low coefficient of thermal expansion with $6 \mathrm{ppm} / \mathrm{K}$ in the range 20 to $1000{ }^{\circ} \mathrm{C}$, corrosionresistant.

Plastic Material

employed as material for housings and mounting parts; cast resin lead sheath

ABS Acrylonitrile-butadiene-styrene-copolymere Housing material, heat-resistant up to $80{ }^{\circ} \mathrm{C}$, limited chemical resistance, hard, scratch- and impact proof.

EP
Epoxy resin
Liquid, then hard-setting for pouring, heat-resistant up to $110^{\circ} \mathrm{C}$, coefficient of thermal expansion with filling material $75 \mathrm{ppm} / \mathrm{K}$, with inorganic filling material content $60 \% 40 \mathrm{ppm} / \mathrm{K}$, dielectricity constant 4.

LCP

Liquid crystalline copolyeter
High quality material for housings and mounting parts, with fibre optic or mineral filling material, application temperature range -200 to $+220^{\circ} \mathrm{C}$

PA Polyamide

Materials for housings and mounting parts.
PA 6
Application termperature range -40 to $+90^{\circ} \mathrm{C}$, for injection moulding or metal-cutting transformation.
PA 12 Application temperature range -70 to $+110^{\circ} \mathrm{C}$, for injection moulding or metal-cutting transformation, suitable for food industry.
PA 66
Application temperature range -40 to $+100^{\circ} \mathrm{C}$, for injection moulding or metal-cutting transformation.

PBT Polybutylenenterephtalate

Material for housings and mounting parts. Application temperature range -50 to $+120^{\circ} \mathrm{C}$, for injection moulding, good resistance against oil and chemicals.

PC Polycarbonate

Material for housings and mounting parts with high resistance. Application temperature range -100 to $+125^{\circ} \mathrm{C}$, for injection moulding, Thermal forming or metal-cutting transformation, sensitive against chemicals and stress cracking.

PEEK Polyetheretherketone

High-quality and high-strength, but very expensive material for housings and mounting parts. For injection moulding or metal-cutting transformation, application temperature range -65 to $+250^{\circ} \mathrm{C}$, good resistance against chemicals.

POM Polyoxymethylene

Universal material for housings and mounting parts. Application temperature range -50 to $+80{ }^{\circ} \mathrm{C}$, for injection moulding. Good resistance against oil and chemicals, especially against solvents. Resistance agianst stress cracking.

PTFE Polytetrafluorethylene

Material with the highest resistance against chemicals. For injection moulding or transformation. Application temperature range -200 to $+260{ }^{\circ} \mathrm{C}$, low mechanical quality level.

PUR, TPU Polyurethane
Material for lead sheath and seals. Application temperature range -40 to $+120^{\circ} \mathrm{C}$. High impact resistance and form stability, good resistance against oil and chemicals.

PVC Polyvinylchloride
Material for lead sheath. Good mechanical stability and resistance against chemicals, application temperature range -30 to $+60^{\circ} \mathrm{C}$.

Leads

for Sensors and as Sensor Accessories with Plug

PVC-Leads		PUR-Leads		Temperature-Resistant Leads	
Number x lead cross section in $\mathrm{mm}^{\wedge} 2$	Outer diameter of the leads in mm	Number x lead cross section in $\mathrm{mm}^{\wedge} 2$	Outer diameter of the leads in mm	Number x lead cross section in $\mathrm{mm}^{\wedge} 2$	Outer diameter of the leads in mm
2x0.14	3.0				
2x0.19	3.5				
2x0.25	4.5				
2x0.34	3.6 shielded	2×0.34	5.2	2×0.34	3.6
2×0.50	4.6	2×0.50	4.3		
2×0.75	6.0 shielded				
3×0.09	2.3				
3×0.14	3.5	3×0.14	3.5		
3×0.14	4.0 shielded				
3×0.25	4.0	3×0.25	4.0		
3×0.25	4.5 shielded				
3×0.34	4.8	3×0.34	4.9		
3×0.34	4.8 shielded				
3×0.50	5.8	3×0.50	5.2		
3×0.50	6.5 shielded				
3×0.75	6.4			3×0.75	6.8
3×0.75	7.0 shielded				
4×0.14	3.5				
4×0.25	4.5 shielded	4×0.25	4.8		
4×0.34	5.4	4×0.34	5.4		
4×0.34	shielded				
4×0.50	6.3				
4×0.50	shielded			4×0.50	7.0
4×0.75	8.0 shielded				
4×0.75	7.4				
5×0.75	7.6				
6×0.14	4.4				
6×0.25	5.0				
6×0.75	8.5 shielded				
7×0.34	6.3				
7×0.75	7.8				

Method of Function of Inductive Proximity Switches

An inductive proximity switch consists of an oscillator with a resonant circuit, rectifier and an output amplifier.

The coil of the oscillating circuit determines the size and shape of the "sensing face" of the proximity switch. The oscillator generates a high frequency oscillation, whose alternating field emanates on the open side of the coil and/or the ferrite core. If a metal piece is inserted into this field, energy is absorbed from the oscillating circuit by eddy current and losses of the alternating magnetization. Thus the oscillator amplitude is being reduced by sufficient approximation of the metal object; the switch is said to be "damped". As a result, the threshold of the rectifier falls short and the switching amplifier alters the switching condition of the output. An internal feedback leads to a sweeping behaviour and hysteresis of the switch-over procedure.

The dimensions of the alternating field depend on the dimensions of the switch and determine the radius of the alternating field, and thus the switching distance of the sensor.

Inductive Proximity Switches for Machines and Plants

are position sensors which require no mechanical contact. They are not subject to mechanical wear. They are mainly used as final position switches. Due to their ruggedness (completely encapsulated) and the highly reliable operating frequency they can be employed for many other tasks, such as pulse sensors for the detection of rotational speed.

Inductive proximity switches are normally used in applications demanding a high operating frequency and actuation speed, switching point accuracy and reliability as well as an operation under harsh conditions (e.g. under water), and a long operational life expectancy.

The company "Industrieelektronik Dr. Klaschka", predecessor to the Klaschka GmbH \& Co. KG, launched the first inductive proximity switch in 1964. Today the product range of sensors comprises several hundred types. This "Sensor" Catalogue presents the most important types which are usually available directly from stock.
In addition to the selection in this catalog, we carry a large number of standard- and customer-specific versions, for which we can send you the Technical Data on request

Requirement Profiles and Executions of Inductive Proximity Switches
A. For the Application at PLCs and Field Bus Interface Connections

- Supply voltage range $8 \ldots 30 \mathrm{~V}$ DC
- Outputs are protected against polarity reversal and short-circuit-proof, with LED display, 2-poles with 1 NO with $5 \ldots 60 \mathrm{~mA}$ or
3-poles with $1 \mathrm{NOp} \leq 200 \mathrm{~mA}$ or
4-poles with $1 \mathrm{NOp}+1 \mathrm{NCp} \leq 200 \mathrm{~mA}$
- Switching frequencies up to 100 kHz
- Normal switching distances for flush mounting according to standard or increased for non-flush mounting according to standard, or maximized for flush mounting
B. For Contactor- or Relay-optimized Applications
- Supply voltage range 18 ... 230 V AC
- Outputs protected against polarity reversal and short-circuit-proof, with LED display 2-poles 1 NO with 10 ... 240 mA
- Switching frequencies up to 10 Hz
- Normal switching frequencies for flush mounting according to standard
- in housings from $18 \mathrm{~mm} \varnothing$ and/or from 34 mm edge length
C. For NAMUR and DIN 19234 Applications
- in explosion-endangered areas, except in zone 0
- Voltage range 7.7 ... 30 VsDC
- Output 2-conductor-current loop with subsequent ZSN-auxiliary device
- Switching frequencies up to $5 \mathrm{kHz}(4 \mathrm{~mm}$ Ø)
- Switching distances as described under A.
D. for Special Applications
adapted to the special requirements of the automotive industry such as
- All metal switches,
- Non-ferrous metal switches,
- Double switches,
- Magnetic field- and weld-proof executions,
- Pressure-resistant executions up to 300 bar
- Extended surface switches up to 200 cm edge length and with switching distances up to 50 cm ,
- Supply voltage ranges 8 ... 65 V DC, 20 ... 320 V DC
- Totally insulated executions etc.

See also EN 60947-5-2.

The switching distance s is the distance at which an actuating element (object) approaching the sensing face causes a signal change. The switching distance depends on the size of the sensing face as well as on the size, the shape, and the material of the actuating element. The VDE standard 660 part 208 defines in addition to the application switching distance s the nominal switching distance sn, the real switching distance sr, and the operating distance sa, measured with a standard reference plate.

The high frequency magnetic field emanates from the sensing face. It depends on the size of the measuring coil and/or the ferrite core, and can be compared with the diameter and/or the edge length of the cap (blue marked).

According to ISO 630 the standard reference plate a*a*1 is a square actuating element made of Fe 360 with a thickness of 1 mm which permits comparing measurements with the switching distance s. The surface of the measuring plate shall alway be moved parallel to the sensing face. The side length a corresponds to the diameter r of the written circle of the sensing face or the triple nominal switching distance, if this value is larger.
The reduction factor \mathbf{R} refers to the switching distance and indicates the factor of the so-called ferrous proximity switches, by which the switching distance of metallic actuating elements, which aren't made of iron or steel, is reduced. The switching distance of all metal proximity switches is not being reduced. All metals always have the reduction factor $\mathrm{R}=1$.

Reproducibility is the repetition accuracy of at least two measurements of the switching distance within a time interval of 8 hours with a housing temperature between $+15^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$ and a voltage between 95 and 105% of the nominal voltage. Switches with \varnothing of up to 12 mm may measure the difference between two measurements by maximally $\leq 10 \%$. Larger ones may have a difference of maximally $\leq 5 \%$.

The characteristic response curves are determined by the size and type of the coil of the resonant circuit and the ferrite core material. In case of cylindrical coils, the field is rotationally symmetric and can be illustrated two-dimensionally by a cross sectional diagram through the axis s .
$\mathrm{w}=$ path axis, $\mathrm{s}=$ distance axis, $\mathrm{sn}=$ switching distance, $\mathrm{r}=$ switching radius, Aw, As = switching-on points, Bw, Bs, C = switching-off points, $\mathrm{Ka}, \mathrm{Kb}=$ characteristic response curves,
$\mathrm{Hw}, \mathrm{Hs}=$ switching hysteresis in w-direction and s-direction,
$\varnothing=$ diameter of the proximity switch and the reference plate.
From the starting direction of the reference plate you can distinguish between

- s-direction the distance switching points As and Bs when entering und leaving the sensor field, and -w-direction the path-switching-points Aw and Bw (actuation by front edge) and Aw and Cw (actuation by front edge when entering and by back edge when leaving the sensor field).
The differences between the switching-on- and switching-off points with an approaching and a receding reference plate are called the switching hysteresis Hs, Hw . For all proximity switches applies: $0.03 \mathrm{sn} \leq \mathrm{Hs} \leq 0.2 \mathrm{sn}$.

The switching radius r is the distance of the switching point from the central axis of the sensing face, when a reference plate approaches radially and with the axial distance of $s=0$.

(1) The real switching distance sr is measured at a nominal voltage and ambient temperature: $0.9 \mathrm{sn} \leq \mathrm{sr} \leq 1.1 \mathrm{sn}$. Its tolerance zone considers the permissible manufacturer's tolerance.
(2) The application switching distance s considers external influences of supply voltage, termperature and mounting: $0.81 \mathrm{sn} \leq \mathrm{s} \leq 1.21 \mathrm{sn}$.
(3) The operating distance sa $=0 \ldots 0.81$ sn corresponds to the safe operating range.

Reduction Factor R	Fe Switch	All Metal Switch
Iron	1.00	1.00
Aluminium	$0.33 \ldots 0.42$	1.00
Brass	$0.33 \ldots 0.45$	1.00
Stainless steel	$0.56 \ldots 1.00$	1.00
Copper	$0.30 \ldots 0.45$	1.00
Cast iron	$0.88 \ldots 1.00$	1.00

Switching Frequencies and Response Times

In the Technical Data of the inductive proximity switches the switching frequency \mathbf{f} is defined as the maximum possible number of switching operations per second. The diagram shows the system for measuring the switching frequency according to IEC 60947-5-2.

Standard reference plates are mounted on a non-conductive rotary reference wheel. The distance between two reference plates must be twice as large as the edge length A of the square reference plate. The dimension A of the standard reference plate depends on the sensing face of the proximity switch used (see standard reference plate).

The quoted standard specifies that the calculation value of switching frequency is reached, if either the switching-on signal or the switchingoff signal at the output of the proximity switch amounts to periodically $50 \mu \mathrm{~s}$. This regulation supposes that the possible switching frequency of a proximity switch is limited to values under 20 kHz .

Indeed switching frequencies over 5 kHz can hardly be realized with the current proximity switches.

Klaschka surpassed this margin clearly with all types of its All Metal Series IAD/AHM. Therefore the internal company standard KWN "switching frequency inductive proximity sensors" sets the value quoted on 10 for the nominal switching frequency fb indicated in the Technical Data.

Altering the conditions indicated in the diagram, e. g. with reference to the damping surfaces, the spacing between the sensing faces, stability of the adjusted switching distance etc. will result in lower values than indicated in the catalogue.

The limit of the maximum switching frequency on a maximum value mainly lies in the time required for the building-up of the measuring oscillator as well as in the time required for the remaining circuit.

The diagram shows the principal course of the switching frequency f over the switching distance s. The curve a was taken up with the configuration shown above according to the IEC standard. The curve b was determined with an individual actuator (actuating cam).

The minimum damping time is measured in the same configuration as the switching frequency. It corresponds to half the period of the switching frequency.

The time delay before availability is the time required from the provision of the supply voltage at the sensor until its availability. It may amount to maximally 300 ms . In this period incorrect signals of maximally 2 ms duration may arise.

External Influences on the Switching Behaviour

Disturbing magnetic fields are mainly produced in industrial plants by electrical welding and electrical drives. If an inductive proximity switch is within the magnetic interference field, fault signals may arise. Also see EN 60947-5-2 (1998) appendix E.

Magnetic-field-resistant proximity switches, as e.g. our All Metal Standard and All Metal Automotive Sensors, comply with this standard due to their special construction of sensor coil and circuit.

The ambient temperature also influences the switching behaviour.
The temperature dependency of the switching distance s in the indicated ambient temperature range is described by a function $s=f(T)$ which is to be determined empirically.

According to EN 60947-5-2 the permissible alternation or drift of the switching distance in the indicated ambient temperature range may not exceed a value of 10%.

The measuring wheel is a non-conducting disc with an applied sqared standard reference wheel

Installation Requirements for Round Sensors

Flush mounting (b): An inductive sensor is flush mountable, if an arbitrary damping material can be attached around the sensing face, without affecting the characteristics.
The flush mountable sensor with the diameter d and the nominal switching distance sn can be mounted into metal up to the sensing face. The following installation instructions apply:

- Distance between the center of two sensors
when these are arranged in row $\geq 2 \mathrm{~d}$
- Distance to an opposite metal face $\geq 3 \mathrm{sn}$
- Distance to a side face $\geq \mathrm{d}$

Non-flush mounting (\mathbf{n}): An inductive sensor is non-flush mountable, if a certain free zone around its sensing face is required in order to preserve the characteristics.
The non-flush mountable sensor with the diameter d and the nominal switching distance sn has to stick out of the metal surface by at least 2 sn . The following installation requirements apply::

- Distance between the centre of two sensors when these are arranged in a row $\geq 3 \mathrm{~d}$
- Distance of the sensing face to an opposite metal face ≥ 3 sn
- Distance to a side face $\geq \mathrm{b}$

Mounting the sensor into a non-metallic material allows flush mounting.

Mounting Requirements for Rectangular Sensors

Flush mounting (b): A rectangular inductive sensor allows flush mounting if it can be mounted up to the sensing face on an arbitrary damping material without affecting the characteristics.
The flush mountable sensor with the width b and the rated switching distance sn can be mounted onto metal up to its sensing face AF. The following mounting requirements apply:

- Distance between the centre of two sensors
when these are arranged in a row $\geq 2 b$
- Distance to an opposite metal face ≥ 3 sn
- Distance to a side face $\geq b$

In case of L- or U-shaped mounting into a metallic environment (see diagram below) the value $\mathrm{e} \geq \mathrm{s}$ is to be kept.

Non-flush mounting (n): A rectangular inductive sensor is non-flush mountable if a certain free zone around its sensing face is necessary in order to maintain its characteristics.
The non-flush mountable sensor with the width b and the nominal switching distance sn has to stick out of the metal at least by b. The following mounting requirements apply:

- Distance between the centre of two sensors when these are arranged in a row $\geq 3 b$
- Distance of the sensing face to an opposite metal face ≥ 3 sn
- Distance to a side face $\geq b$

Installing the sensor onto a non-metallic material with the thickness > 2 sn allows a flush mounting.

Inductive Proximity Switches

Type All Metal Standard

Characteristics

The Inductive Proximity Switches of the Type All Metal Standard IAD / AHM have an ironless coil in connection with an ironless housing. Therefore this type has the

- reduction factor 1 for all metals (A)
- magnetic field-resistance to over 150 mT (M)
and properties, which exceed the requirements stipulated by DIN EN 60 947-5-2 by far such as
- increased switching distance with the flush mounting version
- increased ambient temperature range - $25 \ldots+85{ }^{\circ} \mathrm{C}$
- increased switching frequency of over $10 \mathrm{kHz}(\mathrm{H})$

The increased maximum switching frequencies (maximum operating frequencies) of over $\mathbf{1 0} \mathbf{~ k H z}$ have to be considered in particular. Unlike these, conventional proximity switches with maximum operating frequencies of 200 Hz to 2 kHz are comparably slow.
Apart from the high maximum possible operating frequencies these sensors also offer very short operating times $\leq \mathbf{5 0} \boldsymbol{\mu}$ s (instead of 0.2 to 5 ms with conventional proximity switches).

The LED displays of the Q40 and Q80 versions in the metal housing lead into bright lightened printed-circuit boards, which can be well seen by the operator.

Type All Metal Standard

		Switching distance
Type	Ref. No.	in mm
		Mounting *)
IAD/AHM-18mg50b6-1Sd1A	11.37-04-000	6.0 b
IAD/AHM-18mg50b6-12Sd1A	11.37-06-000	6.0 b
IAD/AHM-18mg50b6-1NDc1A	11.37-30-020	6.0 b
IAD/AHM-18mg50b6-12NDd1A	11.37-32-020	6.0 b
IAD/AHM-18eg50b6-1Sd1A	11.37-37-000	6.0 b
IAD/AHM-18eg50b6-12Sd1A	11.37-38-000	6.0 b
IAD/AHM-18eg50b6-1NDc1A	11.37-39-020	6.0 b
IAD/AHM-18eg50b6-12NDd1A	11.37-40-020	6.0 b
IAD/AHM-18mg60n10-1Sd1A	11.37-54-000	10.0 n
IAD/AHM-18mg60n10-12Sd1A	11.37-55-000	10.0 n
IAD/AHM-18mg60n10-1NDc1A	11.37-67-020	10.0 n
IAD/AHM-18mg60n10-12NDd1A	11.37-69-020	10.0 n
IAD/AHM-30mg50b10-12Sd1A	11.37-07-000	10.0 b
IAD/AHM-30mg50b10-12NDd1A **)	11.37-33-020	10.0 b
IAD/AHM-30mg85n20-12Sd1A	11.37-70-000	20.0 n
IAD/AHM-30mg65n20-12NDd1A **)	11.37-71-020	20.0 n
IAD/AHM-40aq40b15-12Sd1B **)	11.37-16-000	15.0 b
IAD/AHM-40fv54b15-12Sd1B **)	11.37-34-000	15.0 b
IAD/AHM-80aq40b40-12NKd1B **)	11.37-35-050	40.0 b
IAD/AHM-80aq40b40-12Sd1B	11.37-18-000	40.0 b
IAD/AHM-80fq40t40-12Sd1B	11.37-17-000	40.0 t

*) $\mathrm{b}=$ flush mounting, $\mathrm{n}=$ non-flush mounting, $\mathrm{t}=$ partly flush mounting
${ }^{* *}$) $=$ supply on request

Inductive Proximity Switches, All Metal Standard Series IAD/AHM-8eg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050 . In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001
Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!

Wiring (1)

DC 3-poles, plug

Wiring (2)
Euro Plug M8
DC 3-poles, plug

Euro Plug M8 with LED display YE from 4 sides visible

1.1.1.1

 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax +49723479112 • info@klaschka.de • www.klaschka.de

Wiring (3)

DC 3-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

Euro Plug M12 with LED display YE from 4 sides visible

Wiring (5)
DC 3-poles, outgoing lead

Wiring (6)
DC 3-poles, outgoing lead

Inductive Proximity Switches, All Metal Standard Series IAD/AHM-12mg

| |
| :--- | :--- | :--- | :--- |

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050 . In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length10.0 m: Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001
C

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!

Wiring (1)

DC 3-poles, plug

Wiring (2)
DC 3-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

Euro Plug M12 with LED display YE from 4 sides visible

1.1.2.1

Wiring (3)
DC 3-poles, outgoing lead

Wiring (4)
DC 3-poles, outgoing lead

Inductive Proximity Switches, All Metal Standard Series IAD/AHM-18mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050 . In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!

Wiring (1)
DC 3-poles, plug

Wiring (2)
DC 4-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

Euro Plug M12 with LED display YE from 4 sides visible

1.1.3.1

O M18 x 1； 50 mm	O M18 x 1； 60 mm	O M18 x 1； 50 mm	O M18 x 1； 60 mm
PBT／CuZn nickel－plated	PBT／CuZn nickel－plated	PBT／CuZn nickel－plated	PBT／CuZn nickel－plated
6 mm ，flush	10 mm ，non－flush	6 mm ，flush	10 mm ，non－flush
$0 . . .4 .86 \mathrm{~mm}$	$0 . . .8 .1 \mathrm{~mm}$	$0 . .4 .86 \mathrm{~mm}$	0 ．．． 8.1 mm
IAD／AHM－18mg50b6－1Sd1A，11．37－04（1）	IAD／AHM－18mg60n10－1Sd1A，11．37－54（1）	IAD／AHM－18mg50b6－1NDc1A，11．37－30－020（3）	IAD／AHM－18mg60n10－1NDc1A，11．37－67－020（3）
IAD／AHM－18mg50b6－12Sd1A，11．37－06（2）	IAD／AHM－18mg60n10－12Sd1A，11．37－55（2）	IAD／AHM－18mg50b6－12NDd1A，11．37－32－020（4）	IAD／AHM－18mg60n10－12NDd1A，11．37－69－020（4）
$20 \mathrm{kHz} / 25 \mu \mathrm{~s}$			
connector M12； 3 ／ 4 wires	connector M12； 3 wires	lead； 3 ／ 4 wires	lead； 3 ／ 4 wires
$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC			
$\leq 20 \mathrm{~mA}$	$\leq 20 \mathrm{~mA}$	$\leq 20 \mathrm{~mA}$	$\leq 20 \mathrm{~mA}$
$\leq 200 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$
75 V DC	75 V DC	75 V DC	75 V DC
$\leq 1.0 \mu \mathrm{~F}$			
16.5 mm	16.5 mm	16.5 mm	16.5 mm
6.0 mm	7.0 mm	6.0 mm	7.0 mm
yes，YE	yes，YE	yes，YE	yes，YE
500 m	500 m	500 m	500 m
		ND／ $2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}{ }^{\text {＾2 }}$	ND／ $2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}$＾2
$-25 \ldots+85^{\circ} \mathrm{C}$	$-25 \ldots+85^{\circ} \mathrm{C}$	$-25 \ldots+85^{\circ} \mathrm{C}$	$-25 \ldots+85^{\circ} \mathrm{C}$
DC 13	DC 13	DC 13	DC 13
IP 67	IP 67	IP 67	IP 67
II，回	II，回	II，回	II，回
$34 \mathrm{Nm} / 70 \mathrm{Nm}$			
28 g	28 g	$28 \mathrm{~g}+$ weight of the lead	$28 \mathrm{~g}+$ weight of the lead

Wiring（3）
DC 3－poles，outgoing lead

Wiring（4）
DC 4－poles，outgoing lead

\forall	BN
	BK
	WH
	BU

Inductive Proximity Switches, All Metal Standard Series IAD/AHM-30mg

1.1.4.1

Inductive Proximity Switches, All Metal Standard
Series IAD/AHM-40aq, -40fv, -80aq, -80fq

| |
| :--- | :--- | :--- |

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Wiring (1)

Euro Plug M12
DC 4-poles, plug

Wiring (2)
DC 4-poles, outgoing lead

Characteristics

The Series All Metal Automotive IAD / AHMS consists of Inductive Proximity Switches, which were particularly developed for the production lines in the Automotive Industry. They durably withstand the extreme environmental conditions occurring there.

Some of the special requirements Inductive Proximity Switches have to fulfill are

1. the detection of targets of different metals such as iron and aluminium, copper and brass, V2A- and other steels has to be possible without causing a change of the switching distance.
2. the reliable operation in strong electromagnetic fields has to be guaranteed
3. welding splashes, which can't be avoided in body shops, may not impair the characteristics of the switch.

The proximity switches of the Series All Metal Automative made by KLASCHKA have an ironless coil in connection with an ironless housing. The housings are Teflon-coated, the sensing faces are ceramic-coated. Thus these sensors offer

- the reduction factor 1 for all metals (A),
- a high switching frequency and short operating time (H),
- a magnetic field-resistance of more than 150 mT (M),
- a weld-resistance (S).

The proximity switches of the series All Metal Automotive offer features, which go far beyond the requirements of DIN EN 60 947-5-2 such as

- an increased switching distance with flush mounting
- an increased ambient temperature range - $25 \ldots+85{ }^{\circ} \mathrm{C}$ - an increased switching frequency of more than 10 kHz

The switching frequencies (maximally possible operating frequencies) of more than 10 kHz have to be considered in particular. Unlike these, conventional proximity switches with switching frequencies from 200 Hz to 2 kHz are relatively slow.
Apart from the high maximally possible operating frequencies these sensors offer very short operating times $\leq 50 \boldsymbol{\mu}$ (instead of 0.2 to 5 ms of conventional proximity switches).
All versions can be mounted flush into a metal environment and have the connectors M12, O M8 also has the connector M8
The LED displays of the 40aq and 80aq lead into bright lightened printed-circuit-boards, which can be well seen by the operator.

Type		Switching distance
	Ref. No.	in mm
		Mounting *)
IAD/AHMS-8eg60b1.5-1Wc1A	11.36-22-000	1.5 b
IAD/AHMS-8eg60b1.5-1Sd1A	11.36-23-000	1.5 b
IAD/AHMS-12mg50b3.5-1Sd1A	11.36-03-000	3.5 b
IAD/AHMS-18mg50b6-1Sd1A	11.36-04-000	6.0 b
IAD/AHMS-30mg50b10-12Sd1A	11.36-07-000	10.0 b
IAD/AHMS-40aq40b15-12Sd1B **)	11.36-16-000	15.0 b
IAD/AHMS-40fv54b15-12Sd1B **)	11.36-26-000	15.0 b
IAD/AHMS-80aq40b40-12Sd1B	11.36-18-000	40.0 b
IAD/AHMS-80aq40t40-12Sd1B **)	11.36-17-000	40.0 t

> *) $\mathrm{b}=$ flush mounting
> **) $=$ supply on request

Inductive Proximity Switches, All Metal Automotive
Series IAD/AHMS-8eg, -12mg, -18mg, -30 mg

| | Material of the sensing face / of the housing |
| :--- | :--- | :--- |

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Wiring (1)
DC 3-poles, plug

Wiring (2)
DC 3-poles, plug

Euro Plug M8

 with LED display YE from 4 sides visible

Euro Plug M12 with LED display YE from 4 sides visible

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Inductive Proximity Switches, All Metal Automotive Series IAD/AHMS-40aq, -40fq, -80aq, -80fq

	Design; height; length	- 40 mm ; $40 \mathrm{~mm} ; 40 \mathrm{~mm}$	प 40 mm ; 40 mm ; 54 mm
	Material of the sensing face / of the housing	PBT ceramic-coated / AI	PBT ceramic-coated / PBT + PTFE
	witching distance, mounting (see page 1.0.4)	15 mm , flush	15 mm , flush
	Range secured switching distance	0 ... 12.2 mm	0 ... 12.2 mm
Type designation, Ref. no. (Wiring)	NO plus-switching NOp		
	NC plus-switching NCp		
	NO and NC plus-switching NOp + NCp	IAD/AHMS-40aq40b15-12Sd1B, 11.36-16 (1)	IAD/AHMS-40aq40b15-12Sd1B, 11.36-16 (1)
	NO plus-, NC minus-switching NOp + NCn		
	NO minus-switching NOn		
	NC minus-switching NCn		
Maximum switching frequency / Minimum damping period		$15 \mathrm{kHz} / 33 \mu \mathrm{~s}$	$15 \mathrm{kHz} / 33 \mu \mathrm{~s}$
Wiring (connector or lead); number of wires		connector M12; 4 wires	connector M12; 4 wires
Common Technical Data		$\square-52 \longrightarrow$	$\square 55 \longrightarrow \mid$
Reduction factor $\mathbf{1}$ for all metals			-54
Hysteresis of the switching point s $3 \ldots 10 \%$		I	1 - \sum_{1}
Repitition accuracy of the switching point s $\leq 10 \%$			1
- at permanent operating voltage		$\begin{aligned} & g \\ & \square \end{aligned}$	
... and ambient temperature $\leq 2 \%$			
Magnetic field-resistance $\leq 150 \mathrm{mT}$			
Permissible ripple voltage $\leq 15 \%$			$\square 48.5 \longrightarrow$
Short-circuit-proof? yes, clocking		sensing face $\quad \varnothing 5.4$	$\otimes \square$
Protected against polarity reversal ? yes			\%
Voltage drop over a closed contact $\leq 2.5 \mathrm{~V}$ DC			O LED
Ambient temperature range $-25 \ldots+80^{\circ} \mathrm{C}$		$\text { o - - LED } \underset{\sim}{=}$	
Specific Technical Data			
Permissible operating voltage range		$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC	$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC
Current consumption without load		$\leq 30 \mathrm{~mA}$	$\leq 30 \mathrm{~mA}$
Load current		$\leq 200 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$
Nominal insulation voltage		75 V DC	75 V DC
Permissible capacity at output		$\leq 1.0 \mu \mathrm{~F}$	$\leq 1.0 \mu \mathrm{~F}$
\varnothing Sensing face		$38 \times 38 \mathrm{~mm}$	$38 \times 38 \mathrm{~mm}$
Switching radius r (at switching distance of the object) $s=0$; see page 1.0.2)		17.0 mm	17.0 mm
Function indication?		GN for operation, YE for actuated	GN for operation, YE for actuated
Maximum lead length		500 m	500 m
Lead type / standard lead length / number of wires \times lead cross section			
Utilization category according to IEC 60947-5-2		DC 13	DC 13
Degree of protection according to IEC 60529		IP 67	IP 67
Protection class		II, 回	II, 回
Permissible torque without / with toothed disc			
Weight			90 g
		90 g	
Recommended accessories			

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Wiring (1)

Euro Plug M12
DC 4-poles, plug

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!

- $80 \mathrm{~mm} ; 40 \mathrm{~mm} ; 80 \mathrm{~mm}$	- $80 \mathrm{~mm} ; 40 \mathrm{~mm} ; 80 \mathrm{~mm}$
PBT ceramic-coated / AI	PBT + PTFE / PBT + PTFE
40 mm , flush	40 mm , partly flush
0 ... 32.4 mm	0 ... 32.4 mm
IAD/AHMS-80aq40b40-12Sd1B, 11.36-18 (1)	IAD/AHMS-80fq40t40-12Sd2B, 11.36-17 (1)
$15 \mathrm{kHz} / 33 \mathrm{ss}$	$15 \mathrm{kHz} / 33 \mu \mathrm{~s}$
connector M12; 4 wires	connector M12; 4 wires
$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC	$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC
$\leq 30 \mathrm{~mA}$	$\leq 30 \mathrm{~mA}$
$\leq 200 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$
75 V DC	75 V DC
$\leq 1.0 \mu \mathrm{~F}$	$\leq 1.0 \mu \mathrm{~F}$
78 mm	78 mm
32.0 mm	32.0 mm
GN for operation, YE for actuated	GN for operation, YE for actuated
500 m	500 m
DC 13	DC 13
IP 67	IP 67
II, 回	II, 回
360 g	350 g

Characteristics

The series ferrous 3- and 4-poles comprises the "orthodox" Inductive Proximity Switches, which have been developed in the last decades under consideration of the special requirements of our customers. This series is standardized according to EN 60947-5-2.
On behalf of our clients we developed numerous different types whose dimensions deviate from the dimensions indicated in the standard.
When applying these types of the ferrous series it has to be considered that only ferrous metals have the indicated switching distance. When other metals are involved, a reduction factor has to be taken into consideration (see table and diagram).

Reduction Factor \mathbf{R}	Fe-Switch	All Metal Switch
Iron	1.00	1.00
Aluminium	$0.33 \ldots 0.42$	1.00
Brass	$0.33 \ldots 0.45$	1.00
Stainless steel	$0.56 \ldots 1.00$	1.00
Copper	$0.30 \ldots 0.45$	1.00
Cast-iron	$0.88 \ldots 1.00$	1.00

Type Ferrous DC 3- and 4-poles

		Switching distance
Type	Ref. No.	in mm
		Mounting *)
round M8 x L		
IAD-8eg45b1.5-1ND1A **)	11.32-53-020	1.5 b
IAD-8eg45n2.5-1ND1A **)	11.32-54-020	2.5 n
IAD-8eg60b1.5-1W1A **)	11.32-56-000	1.5 b
IAD-8eg60n2.5-1W1A **)	11.32-57-000	2.5 n
IAD-8mq40b1.5-1ND1A **)	11.32-55-020	1.5 b
IAD-8mq60b1.5-1W1 **)	11.32-58-000	1.5 b
round M12 x L		
IAD-12eg60b2-12S2A	11.24-89-000	2 b
IAD-12eg60b2-12S3A	11.32-85-000	2 b
IAD-12fg50b2-1NK1A	11.32-61-020	2 b
IAD-12fg50n5-1NK1A	11.32-62-020	5 n
IAD-12mg35m4-1PD1A	11.33-05-020	4 m
IAD-12mg35m4-2PD1A	11.33-20-020	4 m
IAD-12mg35m4-6ND1A	11.33-10-020	4 m
IAD-12mg40b2-1NK1A	11.20-67-030	2 b
IAD-12mg45b2-1NK1A	11.32-17-020	2 b
IAD-12mg45b2-1TK1A	11.32-18-020	2 b
IAD-12mg45b2-7NK1A	11.32-19-050	2 b
IAD-12mg45b2-7TK1A	11.32-20-020	2 b
IAD-12mg50b2-1PK1A	11.22-42-020	2 b
IAD-12mg50b2-1S1A	11.20-73-000	2 b
IAD-12mg60b2-12NK1A	11.22-11-020	2 b
IAD-12mg60b2-12S1A	11.22-12-000	2 b
IAD-12mg60b2-1NT1A	11.20-01-020	2 b
IAD-12mg60b2-1S2A	11.25-85-000	2 b
IAD-12mg60m4-1NT1A	11.24-09-020	4 m
IAD-12mg60m4-1PD1A	11.25-81-020	4 m
IAD-12mg60m4-1S1A	11.25-03-000	4 m
IAD-12mg60n5-12S1A	11.22-23-000	5 n
IAD-12mg60n5-1NK1A	11.20-15-020	5 n
IAD-12mg60n5-1S1A	11.25-04-000	5 n
IAD-12ms35m5-1Y1	11.33-03-021	5 m
round M18 \times L		
IAD-18fg80b5-1NK1A	11.17-12-020	5 b
IAD-18fg80n10-1NK1A	11.20-95-020	10 n
IAD-18mg35b5-1NK1A	11.20-30-020	5 b
IAD-18mg40m8-1ND1A	11.33-22-020	8 m
IAD-18mg40m8-6ND1A	11.33-11-020	8 m
IAD-18mg50b5-1S1A	11.22-06-000	5 b
IAD-18mg50m8-1S1A	11.33-18-000	8 m
IAD-18mg50n10-1S1A	11.22-16-000	10 n
IAD-18mg60b5-12S1A	11.22-03-000	5 b
IAD-18mg60n10-12S1A **)	11.22-17-000	10 n
IAD-18mg70b5-1S1A	11.25-86-000	5 b
IAD-18mg70m8-1PD1A	11.25-82-020	8 m
IAD-18mg70m8-1S1A	11.25-97-000	8 m
IAD-18mg70n10-12V1A	11.32-91-000	10 n
IAD-18mg80b5-1S1A	11.22-85-000	5 b
IAD-18mg80n10-1S1A	11.22-91-000	10 n
IAD-18mg85b5-1NT1A	11.20-02-020	5 b
IAD-18mg85b5-12NK1A	11.18-32-020	5 b
IAD-18mg85n10-1NT1A	11.20-75-020	10 n
IAD-18mg100b5-1T1A	11.17-89-000	5 b
IAD-18mg100b5-12T1A	11.18-33-000	5 b
IAD-18mg100b5-1T2A	11.21-02-000	5 b
IAD-18mg100n10-1T1A	11.18-37-000	10 n

		Switching distance
Type	Ref. No.	in mm
		Mounting *)
round M30 x L		
IAD-30fg80b10-12NK1A	11.16-50-020	10 b
IAD-30fg80n20-12NK1A	11.17-62-020	20 n
IAD-30mg50b10-1S1A	11.22-19-000	10 b
IAD-30mg65n20-1S1A	11.32-36-000	20 n
IAD-30mg70b10-1S1A	11.25-88-000	10 b
IAD-30mg80b10-1NT1A	11.20-03-020	10 b
IAD-30mg80n20-12S1A	11.22-05-000	20 n
IAD-30mg95b10-12T2A	11.18-45-000	10 b
IAD-30mg95b10-1S1A	11.22-86-000	10 b
IAD-30mg95b10-1T2A	11.18-19-000	10 b
IAD-30sg80b10-12S1A	11.22-04-000	10 b
IAD-30sg80b10-12NT1A	11.18-71-020	10 b
IAD-30sg80n20-1NT1A	11.22-10-020	20 n
rectangular $34 \times 50 \times 65$		
IAD-34aq65b12-1NKe3A	11.35-24-020	12 b
IAD-34aq65b12-12NKe3A	11.35-25-020	12 b
IAD-34zq65b12-1S1A	11.25-90-000	12 b
IAD-34aq65b12-1T3A	11.03-15-000	12 b

rectangular $40 \times 40 \times$ L		
IAD-40aq40b15-12NKd1B **)	11.35-27-020	15 b
IAD-40aq40b15-12Sd1B **)	11.35-26-000	15 b
IAD-40fq54b15-12NKd1B **)	11.35-29-020	15 b
IAD-40fq54b15-12Sd1B **)	11.35-28-000	15 b
IAD-40fq75b15-1T1A	11.16-12-000	15 b
IAD-40fv114b15-12L1B	11.25-52-000	15 b
IAD-40fv114n25-12L1B	11.25-53-000	25 n
IAD-40fv114b15-12S1B	11.25-66-000	15 b
IAD-40fv114n25-12S1B	11.32-98-000	25 n
IAD-40fv114n25-12T1B	11.24-08-000	25 n

rectangular $80 \times 80 \times$ L

IAD-80aq40b40-12NKd1B **)	11.35-31-050	40 b
IAD-80aq40b40-12Sd1B **)	11.35-30-000	40 b
IAD-80fq40t40-12Sd2B **)	11.35-32-000	40 t
IAD-80fq40n40-1T1A	11.16-30-000	40 n
IAD-80fr70e80-1T3A	11.03-21-000	80 n
IAD-80fr70n35-12T1A	11.33-21-000	35 n
IAD-80fr70n50-1T1A	11.03-98-000	50 n
IAD-80fr70n50-1S1A	11.25-92-000	50 n
IAD-80fr70n50-1NT1A	11.03-94-050	50 n

[^1]**) = supply on request
© by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +497234790 • Fax +49723479112 • info@klaschka.de • www.klaschka.de

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-8eg, -8mq

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 3-poles, outgoing lead

Wiring (2)
Euro Plug M8
DC 3-poles, plug

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-12eg, -12fg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005

Wiring (1)

Euro Plug M12
DC 4-poles, plug

Wiring (2)
DC 3-poles, outgoing lead

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!
1.3.2.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax +49 723479112 • info@klaschka.de • www.klaschka.de

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-12mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Wiring (1)
DC 3-poles, outgoing lead

Wiring (2)
DC 3-poles, outgoing lead

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!
1.3.2.3 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax +49 723479112 • info@klaschka.de •www.klaschka.de

Wiring (3)
DC 3-poles, outoging lead
(QYE

Wiring (4)
DC 3-poles, outgoing lead

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-12mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Wiring (1)
DC 3-poles, outgoing lead

Wiring (2)

DC 3-poles, outgoing lead
3-poles, outgoing lead

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001
Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

O M12 x 1; 50 mm	O M12 x 1; 50 mm	O M12 x 1; 60 mm	O M12 x 1; 60 mm
PBT / CuZn nickel-plated			
2 mm , flush			
0 ... 1.62 mm			
IAD-12mg50b2-1PK1A, 11.22-42-020 (3)	IAD-12mg50b2-1S1A, 11.20-73 (4)		
		IAD-12mg60b2-12NK1A, $\quad 11.22-11-020 \quad$ (5)	IAD-12mg60b2-12S1A, $11.22-12$
2 kHz / $\geq 0.2 \mathrm{~ms}$	2 kHz / $\geq 0.2 \mathrm{~ms}$	3 kHz / $\geq 0.1 \mathrm{~ms}$	3 kHz / $\geq 0.1 \mathrm{~ms}$
lead; 3 wires	connector M12; 3 wires	lead; 4 wires	connector M12; 4 wires
8 ... $24 . . .30 \mathrm{~V}$ DC	8 ... $24 . . .30 \mathrm{~V}$ DC	$8 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC	$8 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC
$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$
$\leq 400 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$
75 V DC	75 VDC	75 V DC	75 V DC
$\leq 1.0 \mu \mathrm{~F}$			
10.5 mm	10.5 mm	10.5 mm	10.5 mm
1.85 mm	1.85 mm	1.85 mm	1.85 mm
yes, YE	yes, YE	yes, YE	yes, YE
300 m	300 m	300 m	300 m
PK / $2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}$ ^2		NK / $2.0 \mathrm{~m} / 4 \times 0.34 \mathrm{~mm}$ ^2	
DC 13	DC 13	DC 13	DC 13
IP 67	IP 67	IP 67	IP 67
$9 \mathrm{Nm} / 30 \mathrm{Nm}$			
$45 \mathrm{~g}+$ weight of the lead	30 g	$40 \mathrm{~g}+$ weight of the lead	30 g

Wiring (3)

DC 3-poles, outgoing lead

Wiring (4)
DC 3-poles, plug

Wiring (5)
DC 4-poles, outgoing lead

Wiring (6)
Euro Plug M12
DC 4-poles, plug

Inductive Proximity Swtiches, Ferrous DC 3- and 4-poles
Series IAD-12mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005.

Wiring (1)
DC 3-poles, outgoing lead

| O M12 x 1; 60 mm |
| :---: | :---: | :---: | :---: |
| PBT / CuZn nickel-plated |
4 mm , flush, maximized	4 mm , flush, maximized	4 mm , flush, maximized	5 mm , non-flush
$0 . . .3 .24 \mathrm{~mm}$	0 ... 3.24 mm	0 ... 3.24 mm	$0 . . .4 .05 \mathrm{~mm}$
IAD-12mg60m4-1NT1A, 11.24-09-020 (1)	IAD-12mg60m4-1PD1A, 11.25-81-020 (1)	AD-12mg60m4-1S1A, 11.25-03 (2)	
			IAD-12mg60n5-12S1A, $\quad 11.22-23 \quad$ (3)
$1 \mathrm{kHz} \mathrm{/} \geq 0.3 \mathrm{~ms}$	$1 \mathrm{kHz} \mathrm{I} \geq 01 \mathrm{~ms}$	$1 \mathrm{kHz} \mathrm{/} \geq 0.3 \mathrm{~ms}$	$1 \mathrm{kHz} \mathrm{I} \geq 0.3 \mathrm{~ms}$
lead; 3 wires	lead; 3 wires	connector M12; 3 wires	connector M12; 4 wires
10 ... 24 ... 30 V DC	8 ... $\underline{\underline{4}}$... 30 V DC	8 ... $\underline{24} \ldots 30 \mathrm{~V}$ DC	8 ... $\underline{\underline{4}}$... 30 V DC
$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$
$\leq 400 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$
75 V DC	75 V DC	75 V DC	75 V DC
$\leq 1.0 \mu \mathrm{~F}$	$\leq 1.0 \mu \mathrm{~F}$	$\leq 1.0 \mu \mathrm{~F}$	$\leq 0.47 \mu \mathrm{~F}$
10.5 mm	10.5 mm	10.5 mm	10.7 mm
3.6 mm	3.6 mm	3.6 mm	3.5 mm
yes, YE	yes, YE	yes, YE	yes, YE
300 m	300 m	300 m	300 m
NT / $2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}$ ^2	$\mathrm{PD} / 2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}$ ^2		
DC 13	DC 13	DC 13	DC 13
IP 67	IP 67	IP 67	IP 67
	11,回	II, 回	
$9 \mathrm{Nm} / 30 \mathrm{Nm}$			
$40 \mathrm{~g}+$ weight of the lead	$40 \mathrm{~g}+$ weight of the lead	30 g	30 g

Wiring (3)

DC 3-poles, outgoing lead

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-12mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 3-poles, outgoing lead

Wiring (2)
Euro Plug M12 with LED display YE from 4 sides visible

Elektronik + Automation

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-18fg, -18mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 3-poles, outgoing lead

Wiring (2)
DC 3-poles, outgoing lead

Wiring (3)
DC 3-poles, plug

Wiring (4)
DC 3-poles, plug

Euro Plug M12
with LED display YE from 4 sides visible

Euro Plug M12

Inductive Proximity Switches, Ferrous DC 3- and 4-poles Series IAD-18mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
Euro Plug M12
DC 3-poles, plug

Wiring (2)
DC 4-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

1.3.3.3 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn•Fon +49 7234790 • Fax +49723479112 • info@klaschka.de • www.klaschka.de

Wiring (3)

DC 4-poles, plug

Euro Plug M12

Wiring (5)
DC 3-poles, outgoing lead

Wiring (4)
DC 3-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

Inductive Proximity Switches, Ferrous DC 3- and 4-poles Series IAD-18mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 4-poles, plug

Wiring (2)
Euro Plug M12 with LED display YE from 4 sides visible

Euro Plug M18 with LED display YE from all sides visible

DC 3-poles, plug
DC 3-poles, plug

3

Wiring (3)
DC 3-poles, outgoing lead

Wiring (4)
DC 4-poles, outgoing lead

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-18mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)

DC 4-poles, plug

Wiring (2)
DC 5-poles, plug

Plug

 Amphenol, 5-poles
$3\left(\frac{1}{5} \cdot \frac{1}{9}\right)_{2}$
Plug Amphenol, 5 -poles

Wiring (3)

DC 4-poles, plug

Wiring (4)
DC 4-poles, plug

Plug

Amphenol, 5-poles

Plug
Amphenol, 5 -poles

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-30fg, -30mg

	Design; length	O M30 x 1.5; 80 mm	O M30 x 1.5; 80 mm
	Material of the sensing face / of the housing	PBT / PBT	PBT / PBT
	witching distance, mounting (see page 1.0.4)	10 mm , flush	20 mm , non-flush
	Range secured switching distance	0 ... 8.1 mm	$0 . . .16 .2 \mathrm{~mm}$
Type designation, Ref. no. (Wiring)	NO plus-switching NOp		
	NC plus-switching NCp		
	NO and NC plus-switching NOp + NCp	IAD-30fg80b10-12NK1A, 11.16-50-020 (1)	IAD-30fg80n20-12NK1A, 11.17-62-020
	NO plus-, NC minus-switching $\mathrm{NOp}+\mathrm{NCn}$		
	NO minus-switching NOn		
	NC minus-switching NCn		
Maximum switching frequency / Minimum damping period		300 Hz I $\geq 1 \mathrm{~ms}$	150 Hz / $\geq 2 \mathrm{~ms}$
Wiring (connector or lead); number of wires		lead; 4 wires	lead; 4 wires
Common Technical Data			
Reduction factors Fe / AI / V2A 1.0 / 0.4 / 0.5		- M30x1.5	- M30x1.5
Hysteresis of the switching point s 3 ... 20\%		$\underset{\text { face }}{\operatorname{sensing}}+\cdots$	$\underset{\text { face }}{\text { sensing }}$
Repitition accuracy of the switching point s $\leq 10 \%$			
- at permanent operating voltage			
\ldots... and ambient temperature $\leq 2 \%$		36 ¢1-1	
Magnetic field-resistance		\bigcirc -	-
Permissible ripple voltage $\leq 15 \%$		\%	\&\%
Short-circuit-proof? yes, clocking		1	
Protected against polarity reversal? yes			
Voltage drop over a closed contact $\leq 2.5 \mathrm{~V}$ DC		,	
Ambient temperature range $-25 \ldots+75{ }^{\circ} \mathrm{C}$		LED	LED
Specific Technical Data			
Permissible operating voltage range		8 ... $\underline{\underline{4}}$... 30 V DC	8 ... $\underline{\underline{4}}$... 30 V DC
Current consumption without load		$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$
Load current		$\leq 400 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$
Nominal insulation voltage		75 V DC	75 V DC
Permissible capacity at output		$\leq 0.47 \mu \mathrm{~F}$	$\leq 1.0 \mu \mathrm{~F}$
\varnothing Sensing face		27.4 mm	27.4 mm
Switching radius r (at switching distance of the object) $\mathrm{s}=0$; see page 1.0.2)		9.4 mm	12.2 mm
Function indication?		yes, YE	yes, YE
Maximum lead length		300 m	300 m
Lead type / standard lead length / number of wires \times lead cross section		NK / $2.0 \mathrm{~m} / 4 \times 0.34 \mathrm{~mm}$ ^2	NK / $2.0 \mathrm{~m} / 4 \times 0.34 \mathrm{~mm}$ ^2
Utilization category according to IEC 60947-5-2		DC 13	DC 13
Degree of protection according to IEC 60529		IP 67	IP 67
Protection class			
Permissible torque without / with toothed disc		$8 \mathrm{Nm} / 10 \mathrm{Nm}$	$8 \mathrm{Nm} / 10 \mathrm{Nm}$
Weight		$90 \mathrm{~g}+$ weight of the lead	$90 \mathrm{~g}+$ weight of the lead
Recommended accessories			

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005.

Wiring (1)
DC 4-poles, outgoing lead

Wiring (2)
Euro Plug M12
DC 3-poles, plug

with LED-display YE from 4 sides visible

Wiring (3)
DC 3-poles, outgoing lead

Inductive Proximity Switches Ferrous, DC 3- and 4-poles
Series IAD-30mg, -30sg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 4-poles, plug

Wiring (2)
DC 5-poles, plug

Euro Plug M12
with LED display YE from 4 sides visible

1.3.4.3

Wiring (3)

DC 3-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

$$
2 \underbrace{1}_{3} 4
$$

Wiring (4)
DC 4-poles, plug

Plug Amphenol, 5-poles

Inductive Proximity Switches, Ferrous DC 3- and 4-poles Series IAD-30sg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 4-poles, plug

Wiring (2)
DC 4-poles, outgoing lead

Euro Plug M12
with LED display YE from 4 sides visible

1.3.4.5

Wiring (3)

DC 3-poles, outgoing lead

	BN
	BK
	BU

Inductive Proximity Switches, Ferrous DC 3- and 4-poles Series IAD-34aq

	Design; length	$\square 50 \times 34 \mathrm{~mm}$; 65 mm	$\square 50 \times 34 \mathrm{~mm}$; 65 mm
	Material of the sensing face / of the housing	PBT / AI	PBT / AI
	witching distance, mounting (see page 1.0.4)	12 mm , flush	12 mm , flush
	Range secured switching distance	0 ... 9.72 mm	$0 . . .9 .72 \mathrm{~mm}$
Type designation, Ref. no. (Wiring)	NO plus-switching NOp	IAD-34aq65b12-1NKc3A, 11.35-24-020 (1)	
	NC plus-switching NCp		
	NO and NC plus-switching NOp + NCp		IAD-34aq65b12-12NKd3A, 11.35-25-020 (2)
	NO plus-, NC minus-switching NOp + NCn		
	NO minus-switching NOn		
	NC minus-switching NCn		
Maximum switching distance / Minimum damping period		300 Hz / $\geq 1 \mathrm{~ms}$	300 Hz / $\geq 1 \mathrm{~ms}$
Wiring (connector or lead); number of wires		lead; 4 / 5 wires	lead; 4 / 5 wires
Common Technical Data		sensing face	sensing face
Reduction factors Fe / AI / V2A 1.0 / 0.4 / 0.5		06.6	¢ 6.6
Hysteresis of the switching point s 3 ... 20%		T	
Repitition accuracy of the switching point s $\leq 10 \%$		LED ¢ ¢	¢ ¢ ¢
at permanent operating voltage		\checkmark -	$\cdots+\stackrel{\sim}{0}$
... and ambient temperature $\leq 2 \%$		1	∞
Magnetic field-resistance		1	1
Permissible ripple voltage $\leq 15 \%$		thread -36-potentiometer	thread $-36-$ potentiometer
Short-circuit-proof? yes, clocking			
Protected against polarity reversal ? yes			
Voltage drop over a closed contact $\leq 2.5 \mathrm{~V}$ DC		[il ili 4	iin 4
Ambient temperature range $-25 \ldots+75^{\circ} \mathrm{C}$		+	-
Specific Technical Data			
Permissible operating voltage range		10 ... $\underline{24}$... 30 V DC	10 ... $\underline{24}$... 30 V DC
Current consumption without load		$\leq 10 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$
Load current		$\leq 400 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$
Nominal insulation voltage		75 V DC	75 V DC
Permissible capacity at output		$\leq 0.47 \mu \mathrm{~F}$	$\leq 0.47 \mu \mathrm{~F}$
\varnothing Sensing face		$48 \mathrm{~mm} \times 32 \mathrm{~mm}$	$48 \mathrm{~mm} \times 32 \mathrm{~mm}$
Switching radius r (at switching distance of the object) s = 0; see page 1.0.2)		11.8 mm	11.8 mm
Function indication?		yes, YE	yes, YE
Maximum lead length		300 m	300 m
Lead type / standard lead length / number of wires \times lead cross section		NK / $2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}$ ^2	NK / $2.0 \mathrm{~m} / 4 \times 0.34 \mathrm{~mm}$ ^2
Utilization category according to IEC 60947-5-2		DC 13	DC 13
Degree of protection according to IEC 60529		IP 67	IP 67
Protection class			
Permissible torque without / with toothed disc			
Weight		$300 \mathrm{~g}+$ weight of the lead	$300 \mathrm{~g}+$ weight of the lead
Recommended accessories			

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005

Wiring (1)
DC 3-poles, outgoing lead

Wiring (2)

DC 4-poles, outgoing lead
4-poles, outgoing lead

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001
Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (3)

DC 5-poles, plug

Wiring (4)
DC 4-poles, plug

Euro Plug M12

> Plug
> Amphenol, 5 -poles

Inductive Proximity Switches, Ferrous DC 3- and 4-poles
Series IAD-40aq, -40fq

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 4-poles, outgoing lead

Wiring (2)
Euro Plug M12
DC 4-poles, plug

- 40mm; 40 mm ; 54 mm	- 40mm; 40 mm ; 54 mm	- 40mm; 40 mm ; 64 mm
PBT / PBT	PBT / PBT	PBT / PBT
15 mm , flush	15 mm , flush	15 mm , flush
0 ... 12.2 mm	0 ... 12.2 mm	0 ... 12.2 mm
		IAD-40fq75b15-1T1A, 11.16-12 (3)
IAD-40fq54b15-12NKd1B, 11.35-29-020 (1)	IAD-40fg54b15-12Sd1B, 11.35-28 (2)	
1 kHz / $\geq 0.5 \mathrm{~ms}$	1 kHz / $\geq 0.5 \mathrm{~ms}$	200 Hz / $\geq 1.5 \mathrm{~ms}$
lead; 4 wires	connector M12; 4 wires	connector M30; 3 wires
$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC	$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC	$8 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC
$\leq 20 \mathrm{~mA}$	$\leq 20 \mathrm{~mA}$	$\leq 10 \mathrm{~mA}$
$\leq 200 \mathrm{~mA}$	$\leq 200 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$
75 V DC	75 V DC	75 V DC
$\leq 1.0 \mu \mathrm{~F}$	$\leq 1.0 \mu \mathrm{~F}$	$\leq 1.0 \mu \mathrm{~F}$
$38 \times 38 \mathrm{~mm}$	$38 \times 38 \mathrm{~mm}$	$38 \times 38 \mathrm{~mm}$
17.0 mm	17.0 mm	13.0 mm
GN for operation, YE for actuated	GN for operation, YE for actuated	yes, YE
500 m	500 m	300 m
NK / $2.0 \mathrm{~m} / 4 \times 0.34 \mathrm{~mm}$ ^2		
DC 13	DC 13	DC 13
IP 67	IP 67	IP 65
11, 回	11, 回	
90 g	90 g	150 g

Wiring (3)

DC 3-poles, plug

Plug
Amphenol, 5-poles

Inductive Proximity Switches, Ferrous DC 3- and 4-poles Series IAD-4Ofv

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001
Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 4-poles, clamp terminal

Wiring (2)
Euro Plug M12
DC 4-poles, plug

Inductive Proximity Switches, Ferrous DC 3- and 4-poles Series IAD-80aq, -80fq

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no..

Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 4-poles, outgoing lead

Wiring (2)
Euro Plug M12
DC 4-poles, plug

Wiring (3)

DC 4-poles, plug

Euro Plug M12

Wiring (4)
DC 3-poles, plug

Plug
Amphenol, 5 -poles

Inductive Proximity Switches, Ferrous DC 3- and 4-poles Series IAD-80fr

Wiring (3)
DC 3-poles, plug

Wiring (4)
DC 3-poles, out going lead

Inductive Proximity Switches

Type Ferrous AC- and DC 2-poles

Characteristics

The Series Ferrous AC and DC 2-poles comprises „classical" Inductive Proximity Switches. Due to the multiple requirements of our customers, we developed numerous different construction designs and versions for AC- and DC-voltage, which deviate from the dimensions stipulated in the standards.

Due to the disapprearance of contactor controls and the currently mainly employed PLCs the importance of the two-pole AC-voltage switches has decreased. Nevertheless we included some of these types for spare part reasons.
The same applies for AC- and / or DC-voltage sensors. These socalled All Voltage Sensors can be operated with an alternating voltage in the range from $\mathbf{5 0}$ to $\mathbf{6 0 ~ H z}$ or with direct voltage.

Please note: The switching frequency (maximum operating frequency) of AC-and DC-voltage sensors is limited to the frequency of the supply voltage and the time delay before availability of the sensor rises up to over 20 ms .
The same applies with regard to ripple voltage and voltage fluctuations when all voltage sensors are operated with DC-voltage.

For supply of the electronic part the idle current IR of a two-pole sensor flows via the load resistance RI , as long as the switch S is not being actuated, and generates at the load resistance a voltage drop, which can ben neglected.

After a switch has been closed the voltage Uv of the two-pole switch drops by approx. 5 Volt. This voltage serves for the supply of the sensor electronics and reduces the voltage UL at the load resistance RL.

When switches of the ferrous series are used it has to be considered that only metals containing iron have the indicated switching distance. Using other metals the reduction factor R (see table) has to be considered.

Reduction factor \mathbf{R}	Fe-switch	All metal switch
Iron	1.00	1.00
Aluminium	$0.33 \ldots 0.42$	1.00
Brass	$0.33 \ldots 0.45$	1.00
Stainless steel	$0.56 \ldots 1.00$	1.00
Copper	$0.30 \ldots 0.45$	1.00
Cast-iron	$0.88 \ldots 1.00$	1.00

Design Ferrous AC- and DC 2-poles

*) $\mathrm{b}=$ flush mounting, $\mathrm{n}=$ non-flush mounting, $\mathrm{m}=$ maximized; flush mounting
**) = supply on request
${ }^{* * *}$) $=$ for replacement purposes only

Inductive Proximity Switches, Ferrous DC 2-poles
Series IAB-8eg, -12mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no.
Examples: Lead length 10.0 m: Index -100 , lead length 0.5 m : Index -005

Wiring (1)
DC 2-poles, outgoing lead

Wiring (2)
DC 2-poles, outgoing lead

Wiring (3)

DC 2-poles, plug

Euro Plug M12

Inductive Proximity Switches, Ferrous DC 2-poles
Series IAB-18mg, -30sg, -30mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050 . In case that deviated lengths are required, please indicate this in the ref. no.
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!
Wiring (1)
DC 2-poles, outgoing lead

Wiring (2)
DC 2-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

1.4.2.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax +49 723479112 • info@klaschka.de •www.klaschka.de

Inductive Proximity Switches, Ferrous DC 2-poles
Series IAB-40fq, -40fv, -80fq

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.

For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index -020 or -050. In case that deviated lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005 .

Wiring (2)
DC 2-poles, clamp terminal

Wiring (3)

DC 2-poles, plug

Euro Plug M12

$2 \underbrace{1}_{3}$

Inductive Proximity Switches, Ferrous AC 2-poles Series IAW-18mg, ISW-18mg, ISW-30mg

Inductive Proximity Switches Type Double Switch

Double Switch

Inductive double switches are proximity switches with two separate sensor elements (sensing faces) for the non-contacting and contactless interrogation of two different positions in order to detect travel paths (position sensor) or directions of movement (backwardsforwards identification) of an actuator. These positions may, for example, be two end positions or specific positions.

Double switches along with feeding devices are also used in what are known as clamping and gripping systems. These systems serve to clamp, hold and stop when welding or joining components such as steel sheets and mouldings. The clamping systems consist, amongst other things, of so-called toggle clamps which may be operated electrically or pneumatically. The two end positions of the clamp lever are interrogated by means of a double switch. While in the example (see adjacent figure) the right sensor is firmly arranged, the angular position of the opened gripper can be modified by a different placement of the left sensor element. The two sensor elements interrogate the end positions, clamp "open" and "closed". The cylindrical evaluator is located on a special plastic holder. A large allround inspection window clearly shows the switching status in each case.

Applications

The sensor elements can be provided with supply leads of up to 1 m in length for end positions lying further apart (> 100 mm). This allows the detection of even large travel paths in machines. The sensor elements can be accommodated in a ceramic envelope with heat resisting supply lead where increased temperatures of up to $300^{\circ} \mathrm{C}$ are present at the measuring location. The sensor element can also be designed with a high degree of protection (IP68).

The two-channel evaluator allows an operating frequency of up to 20 kHz and sits in a metal housing with a large all-round inspection window on the end face to display the switching status. The switch is insensitive to magnetic fields up to 100 mT and non-welding. The holder for the evaluator is made of injection moulded plastic and must be structurally adapted to each application.

The inductive double switch has the following significant advantages:

- Smallest design of the sensor elements having a sensing face with a 6 mm diameter
- Operating frequencies of up to 20 kHz
- Evaluator and sensor elements are easy to install

Type Double Switch
Type
*) $b=$ flush mounting, $n=$ non-flush mounting, $t=$ partially flush mounting

Inductive Proximity Switches, Double- and Multiple
Series IAD2/H-18zr

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12.2 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length10.0 m: Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
Euro Plug M12
2 sensor elements (2 channels),
DC 3-poles, plug

\qquad

Pulse Sensors, Magentic Field

Pulse Sensors, Magnetic Field Plate and Hall Element

Task

Hall element (HAD) and Magnetic Field Plate Switches (MAD) are especially suitable for detecting the rotation speed and direction of shafts using gear wheels from module 0.3 or larger. Thus these sensors can be used as increment generators, for counting tasks, and position control. For example, rack rails can be scanned in order to detect the speed and direction of linear motions.

Method of Operation

The active element in the HAD and MAD sensors is a differential feeler, made of two magnetic field dependent sensors (Hall element or field plate) mounted on axially poled permanent magnets. The two sensors are connected in series with a lead connected to the center. Thus the differential sensor is half of the measuring bridge.

If the switch is not externally influenced, the field lines of the permanent magnet extend symmetrically outwards. Both sensors, permeated by magnetic flux of equal strength, produce equal Hall voltages or resistances respectively.

If a soft iron actuating element approaches the sensing face laterally, the magnetic field is distorted; the field lines become asymmetrical. The resulting unequal Hall voltages or resistances unbalance the bridge B, causing the comparator K to generate a switching signal, which is fed to the push-pull output amplifier V via the level converter P.

Characteristics

Compared to inductive proximity switches, HAD and MAD have an entirely different behaviour, which makes them suitable for special applications. The most important characteristics are the following:

- High switching frequency (up to 25 kHz)
- High geometrical resolution (down to approx. module 1)
- For registering soft iron edges which are approaching or passing by, unsuitable, however for axially approaching or non-ferrous objects.
- Push-pull output

The magnetic field pulse sensors have generally a preferential actuating direction. During the lateral actuation with a steel lug the status at the sensor output changes depending on the direction from "High" to "Low" and/or from "Low" to "High". After the removal of the flag the status at the output remains the same (self-holding sensor).
In general, the load resistance must be connected in the same way as with an open collector output: To the negative (or positive) terminal. When so connected, the push-pull output quickly discharges the lead capacities, ensuring output pulses with precise edges even with long output lines and high switching frequency. Connecting the load resistances to both positive and negative terminals results in a simple arrangement for monitoring lead breaks.

Notes

For trouble-free operation of magnetic field plate and Hall element switches, the strict observation of the following points is imperative:

- Instructions and sketches concerning material, distances, and mounting
- Mount so that groove on housing is exactly perpendicular to tooth edges
- Keep metal filings away from the sensing surface
- The distance from the connecting leads to inductive laods has to be $\geq 30 \mathrm{~cm}$
- Whenever lead lengths are > 10 m , a shielded lead must be used. The shield must be connected to $L-(0 \mathrm{~V})$ at the device end only
- The tooth length should not exceed 3 mm ; magnetic field plate switches are thus unsuitable for the detection of grooves.

Versions

Static magnetic field plate proximity switches for the arbitrarily slow motions from OHz , for counting functions, and for positioning.
Magnetic field plate proximity switches with self-regulating circuit for higher sensivity (greater switching distance) and stability of the output signals, switching frequency from down to 1 Hz .
Special versions, e.g. for extended temperature range (e.g. - $40 \ldots+$ $100^{\circ} \mathrm{C}$), with LED etc. as well as special designs on request.

Principle of magnetic field pulse sensor	Typical switching distance	Actuating frequency
static	1 mm	$0 \ldots 25 \mathrm{kHz}$ dynamic
2.5 mm		

Mounting

When mounting the pulse generator the right mounting position has to be considered. The pulse sensor has a position marking which allows an alignment parallel to the tooth flank and vertical to the actuating dirction.
The air gap a (=actuating distance) is calculated from the indicated rated switching distance s minus the sum of all tolerances t (radial play of the gear wheel, bearings, adjustment tolerance): $\mathrm{a}=\mathrm{s}-\sum \mathrm{t}=0.1 \mathrm{~s} \ldots 0.6 \mathrm{~s}$.

The pulse generation with magnetic pulse sensors allows a maximum working frequency up to $\mathbf{2 5} \mathbf{~ k H z}$

Accessories and Evaluation Devices

- Gear wheels with module 1 with different diameters and numbers of teeth, mounting parts etc.
Therefore see chapter 12 "Accessories"
- ISN rotation speed measuring relay, IWA frequency-current converter, MID rotation speed indicators, LWK running monitors (see also the catalogues ALMOD Electronic Modules and ALUN Technology-oriented Products).

Method of Operation of Inductive All Metal - Pulse Sensors

An inductive all metal pulse sensor consists of an oscillator with oscillating circuit S, a discrimator D and an output output switching amplifier V.
The coil of the oscillating circuit determines the size and shape of the "sensing face" of the proximity switch. The oscillator generates a highly frequent oscillation, whose alterning field W emerges from the open side of the inductivity.

If a metallic object immerses into this field, energy is removed from the oscillating circuit by eddy current- and unmagnetization losses in the metal object. Thus the oscillator amplitude is being reduced by sufficient approximation of the metal piece; the switch is being "damped". As a consequence the threshold of the discriminator is fallen below and the switching amplifier changes the switching condition at its output. An internal feedback provides for sweep behaviour and hysteresis of the switch-over process.
When operated as pulse sensor, the metal object, e.g. the tooth of a gear wheel, immerses laterally into the field.

Advantages of Inductive All Metal Pulse Sensors:

- Objects made of light metal, e.g. of aluminium- or magnesium alloy, can be used as actuator. Thus gear wheels and pulse disks for higher rotation speeds can be produced than with ferrous metals.
- Switching frequencies maximally attainable by our all metal pulse sensors are far above 25 kHz . With the push-pull output levels used pulse frequencies of 100 kHz and more can be attained.
- All metal pulse sensors are magnetically interference-resistant and cannot be influenced by interference fields, which may arise from engine coils- and collectors.

Pulse Generation using All Metal Pulse Sensors and Cams

The rotating shaft is scanned by an inductive proximity switch with help of a cam, which is of an arbitrary metal. The scanning is accomplished without contact to the shaft nor influence on its motion. The switch generates rectangular pulses with the pulse frequency $\mathrm{f}=\mathrm{n} / 60$ ($\mathrm{n}=$ rotation speed rpm). A groove, wedge, or switching lug can serve in place of a cam. With non-metallic shafts, an adhesive metal strip can be used.

When several all metal pulse sensor are located side by side a minium distance of three times the outer diameter between the pulse sensors has to be observed.
Pulse Generation using All Metal Pulse Sensor and Perforated Disk
The perforations have to be arranged so that, at a maximum rotation speed and pulse frequency, the ratio of pulse duration to pause is 1 : (0.7 ... 1.3).

Recommended Values:

Distance disk / switch:

$$
a=0.6 \mathrm{~s}(0.5 \ldots 0.7 \mathrm{~s})
$$

Diameter of holes:
Distance between holes:
Pitch:
= ca. 2 d
e = ca. d
Radius of disk:
$T=b+e$

Pulse Generation with All Metal Pulse Sensor and Code Disk
A pulse disk made of copper plated fibreglass reinforced plastic (such as the material used for printed circuit boards) is used. If e is the width of the copper surface under the proximity switch and b is the distance between the copper surfaces, the values recommended for the perforated disk are also valid for the code disk.

Pulse Generation using All Metal Pulse Sensor and Toothed Disk
The toothed disk can be of any suitable non-magnetic material, e.g. an aluminium- or magnesium alloy. The values given under "Pulse generation using a magnetic field pulse sensor" can serve as a guide for designing the arrangement. The toothed disk, however, needs to have the same width as the diameter of the sensing face.

The duty cycle can be adjusted to 50% at maximum rotation speed by using a rotating coil instrument and changing the distance a.

Finally, the amount of variation in the duty cycle must be monitored using an oscilloscope. If the variation does not remain within the $44 \ldots$ 59% range, either the mechanical tolerances must be reduced or a less critical arrangement or construction must be selected.

Pulse Sensors

Type Magnetic Field

Characteristics

Pulse sensors of the type magnetic field are suitable for the generation of rotation speed-proportional pulse numbers and are equipped with either a Hall- or a magneto-resistance sensor element.

For the pulse generation either a gear wheel or a rack rail made of steel,e.g. St37 are used, for whose width B applies:

4 mm < B < $\boldsymbol{\varnothing}$ sensor.

With the mounting the right mounting position has to be considered. The axis of the pulse sensor has to in line with the center of the gear wheel / of the rack rail. A lateral position marking allows an alignment parallel to the tooth flank and/or vertical to the actuating direction.
The lateral displacement of the gear wheel / of the rack rail may not exceed 0.2 mm at the smallest width. The run-out should be $<0.2 \mathrm{~mm}$.
The fixing has to avoid reliably a vibration of the pulse sensor against the gear wheel / the rack rail.

The pulse sensors produce a rectangular output signal. There are two different types:

- dynamic pulse sensors for an actuating frequency range of some Hertz up to approx. 25 kHz
- static pulse sensors for an actuating frequency range from 0 to approx. 20 kHz .
Please take precise values from the Technal Data.

Pulse Sensors Type Magnetic Field

		Switching distance			Switching distance
Type	Ref. No.	in mm	Type	Ref. No.	in mm
		Mounting *)			Mounting *)
HALL round $10 \varnothing \times L$			HALL round $140 \times \mathrm{L}$		
HAD-10er59b2-6TK1 **)	13.26-29-020	2.0 b	HAD-14eg50b1-5ND1	13.26-77-025	1.0 b
			HAD-14er120b1-5TT3	13.26-79-030	1.0 b
HALL round 10.8 Ø x L					
HAD-11ms45b2.5-5S1	13.26-01-000	2.5 b	HALL round $16 \varnothing \times$ L		
HAD-11ms60b1-5Sd1	13.26-66-000	1.0 b	HAD-16ss96b1-5Yd1	13.26-73-000	1.0 b
HAD-11ms60b2.5-50NK1	13.26-03-000	2.5 b			
HAD-11ms60b2.5-50Y1	13.26-07-000	2.5 b	HALL round $18 \varnothing \times$ L		
HAD-11ms60b2.5-50Y2	13.26-08-000	2.5 b	HAD-18eg82b1-5NT1	13.26-71-020	1.0 b
HAD-11ms60b2.5-50Y3	13.26-10-000	2.5 b	HAD-18mg82b1-5NT1	13.26-69-020	1.0 b
HAD-11ms60b2.5-50Y4	13.26-12-000	2.5 b	HAD-18mg93b1-5Sd1	13.26-68-000	1.0 b
HAD-11ms60b2.5-50Y5	13.26-27-000	2.5 b	HAD-18mg98b1-5Vd1	13.26-67-000	1.0 b
HAD-11ms60b2.5-50Y6	13.26-28-000	2.5 b	HAD-18sg80b2.5-5TK1	13.26-50-020	2.5 b
HAD-11ms60b2.5-50Z1	13.26-02-000	2.5 b	HAD-18ss100b1.6-5NT1	13.26-65-005	1.6 b
HAD-11ms60b2.5-5S1	13.26-13-000	2.5 b	HAD-18ss85b1-5NT1	13.26-64-060	1.0 b
HAD-11ms60b2.5-5S4	13.26-56-000	2.5 b			
HAD-11ms60b2.5-5Y2	13.26-53-000	2.5 b	magneto-resistant round $12 \varnothing$		
HAD-11ms60b2.5-5Y3	13.26-54-000	2.5 b	MAD-12aq50b0.4-5NK1	13.21-59-020	0.4 b
HAD-11ms60b2.5-5Y4	13.26-57-000	2.5 b			
HALL round $12 \square \times$ L					
HAD-12aq50b1-5NK1	13.26-63-020	1.0 b			
HAD-12er55b1-5PK1	13.26-70-020	1.0 b			
HAD-12er55b2.4-5NK2	13.26-72-000	2.4 b			
HAD-12er55b2.5-5NK1	13.26-38-020	2.5 b			
HAD-12mg50b2.5-5ND1	13.26-06-020	2.5 b			
HAD-12mg70b2.5-5S2	13.26-55-000	2.5 b			
HAD-12mg70b2.5-5S3	13.26-74-000	2.5 b			
HAD-12ms41b2.5-5NK1	13.26-51-000	2.5 b			
HAD-12ms41b2.5-5Y1	13.26-52-000	2.5 b			

*) $b=$ flush mounting, $n=$ non-flush mounting, $t=$ partly flush mounting
**) = supply on request

Pulse Sensors, Magnetic Field
 Series HAD-10er, -11ms

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.

For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no.
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 3-poles, push-pull, outgoing lead

Wiring (2)
Euro Plug M12
DC 3-poles, push-pull, plug

Pulse Sensors, Magnetic Field
 Series HAD-11ms

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.

For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 4-poles, outgoing lead

Wiring (2)
DC 5-poles, plug

Pulse Sensors, Magnetic Field
 Series HAD-11ms

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Wiring (1)

DC 5-poles, plug

Euro Plug M12

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001
Safety Regulations
Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Pulse Sensors, Magnetic Field
 Series HAD-11ms

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Wiring (1)

DC 5-poles, plug
Euro Plug M12

Wiring (2)
DC 5-poles, plug

Euro Plug M12

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (3)

DC 3-poles, plug

Euro Plug M12

Pulse Sensors, Magnetic Field
 Series HAD-11ms

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.

For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
Euro Plug M12
DC 3-poles, push-pull, plug

Wiring (2)
Euro Plug M12 DC 3-poles, push-pull, plug

Wiring (3)
DC 3-poles, push-pull, male plug

Euro Plug M12

Pulse Sensors, Magnetic Field

 Series HAD-11ms, -12aq, -12er

Pulse Sensors, Magnetic Field
 Series HAD-12er, -12mg

Pulse Sensors, Magnetic Field

Series HAD-12mg, -12ms

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no.

Wiring (1)

DC 4-poles, push-pull, plug

Wiring (2)
Euro Plug M12
DC 3-poles, push-pull, plug

Wiring (3)
DC 3-poles, push-pull, outgoing lead

	BN
	BK
	BU

Pulse Sensors, Magnetic Field

Series HAD-12ms, -14eg, -14er

Wiring (3)
DC 3-poles, push-pull, outgoing lead

Pulse Sensors, Magnetic Field

Series HAD-16ss, -18eg, -18mg

O M18 x 1; 82 mm						O M18 x 1; 82 mm						
PBT / stainless steel						PBT / CuZn nickel-plated						
-/1/--/- mm; flush						-/1/-/-/- mm; flush						
-/0.5/-/-/- mm						-/0.5/-/-/- mm						
HAD-18eg82b1-5NT1,	13.26-71-020		(2)									
0 ... 12 kHz						HAD-18mg82b1-5NT1, $\quad 13.26-69-020$						
lead; 3 wires						lead; 3 wires						
Actuating direction						Actuating direction						
$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC						10 ... $24 . . .30 \mathrm{~V}$ DC						
$\leq 25 \mathrm{~mA}$						$\leq 25 \mathrm{~mA}$						
$\leq 25 \mathrm{~mA}$						$\leq 25 \mathrm{~mA}$						
$\leq 1.5 \mathrm{~V}$						$\leq 1.5 \mathrm{~V}$						
$\leq 10 \mathrm{~V}$						$\leq 10 \mathrm{~V}$						
75 V DC						75 V DC						
$-25 \ldots+80^{\circ} \mathrm{C}$						$-25 \ldots+100{ }^{\circ} \mathrm{C}$						
$\leq 150 \mathrm{~m}$						$\leq 150 \mathrm{~m}$						
NT / $2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}$ ^2						NT / $2.0 \mathrm{~m} / 3 \times 0.75 \mathrm{~mm}^{\wedge} 2$						
DC 12						DC 12						
IP 67						IP 67						
$45 \mathrm{Nm} / 90 \mathrm{Nm}$						$34 \mathrm{Nm} / 70 \mathrm{Nm}$						
$150 \mathrm{~g}+$ weight of the lead						$150 \mathrm{~g}+$ weight of the lead						

Wiring (3)
DC 3-poles, push-pull, outgoing lead

Pulse Sensors, Magnetic Field
 Series HAD-18mg, -18sg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ef. no..
Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005.

Wiring (1)
Euro Plug M12
DC 3-poles, push-pull, plug

Wiring (2)

Euro Plug M18
DC 3-poles, push-pull, plug

Wiring (3)
DC 3-poles, push-pull, outgoing lead

	BN
	BK
	BU

Pulse Sensors, Magnetic Field
 Series HAD-18ss, MAD-12aq

O 18 mm; 85 mm					$\square 25$ mm x 12 mm ; 50 mm						
PBT / steel					CuZn / aluminium						
-/1.3/1.8/2.4/2.5 mm; flush					-/1.0/-I-/- mm; flush						
-/0.65/0.9/1.2/1.2 mm					-/0.5/-/-/- mm						
HAD-18ss85b1-5NT1, 13.26-64-060 (2)					MAD-12aq50b0.4-5NK1, 13,		13.21-59-020	(3)			
5 Hz .. 20 kHz					0 ... 10 kHz						
lead; 3 wires					lead; 3 wires						
					Actuating direction of the rack rail or the gear wheel						
$8 \ldots 24 \ldots 30 \mathrm{~V}$ DC					10 ... $24 . . .30 \mathrm{~V}$ DC						
$\leq 10 \mathrm{~mA}$					$\leq 25 \mathrm{~mA}$						
$\leq 25 \mathrm{~mA}$					$\leq 25 \mathrm{~mA}$						
$\leq 1.5 \mathrm{~V}$					$\leq 1.5 \mathrm{~V}$						
$\leq 10 \mathrm{~V}$					$\leq 10 \mathrm{~V}$						
75 V DC					75 V DC						
$-25 \ldots+80^{\circ} \mathrm{C}$					$-25 \ldots+75^{\circ} \mathrm{C}$						
$\leq 150 \mathrm{~m}$					$\leq 150 \mathrm{~m}$						
$\mathrm{NT} / 6.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}$ ^2					NK / $2.0 \mathrm{~m} / 3 \times 0.34 \mathrm{~mm}^{\wedge} 2$						
DC 12					DC 12						
IP 67					IP 67						
$150 \mathrm{~g}+$ weight of the lead					$40 \mathrm{~g}+$ weight of the lead						

Wiring (3)
DC 3-poles, push-pull, outgoing lead

Pulse Sensors

Characteristics

Here principally all Inductive Proximity Switches of the Type All Metal Standard IAD / AHM are applicable, as they have short response times and thus high operating frequencies.

They have an ironless coil in connection with an ironless housing. Therefore this type has the

- reduction factor 1 for all metals (A)
- magnetic field-resistance to over 150 mT (M)
and properties, which exceed the requirements stipulated by DIN EN 60 947-5-2 by far such as
- increased switching distance with the flush mounting version
- increased ambient temperature range - $25 \ldots+85{ }^{\circ} \mathrm{C}$
- increased switching frequency of over $10 \mathrm{kHz}(\mathrm{H})$

The increased maximum switching frequencies (maximum operating frequencies) of over $\mathbf{1 0} \mathbf{~ k H z}$ have to be considered in particular. Unlike these, conventional proximity switches with maximum operating frequencies of 200 Hz to 2 kHz are comparably slow.
Apart from the high maximum possible operating frequencies these sensors also offer very short operating times $\leq \mathbf{5 0} \boldsymbol{\mu}$ s (instead of 0.2 to 5 ms with conventional proximity switches).

The switching distances as a function of frequency and modules of the following inductive pulse sensors can be provided on request.

Pulse Sensors, Type Inductive

		Switching distance			Switching distance
Type	Ref. No.	in mm	Type	Ref. No.	in mm
		mounting *)			mounting *)
IAD/AHM-8eg60b1.5-1Wc1A	11.37-22-000	1.5 b	IAD/AHM-12mg50b3.5-1Sd1A	11.37-03-000	3.5 b
IAD/AHM-8eg60b1.5-2Wc1A	11.37-24-000	1.5 b	IAD/AHM-12mg50b3.5-2Sd1A	11.37-10-000	3.5 b
IAD/AHM-8eg60b1.5-1Sd1A	11.37-23-000	1.5 b	IAD/AHM-12mg50b3.5-1NDc1A	11.37-28-020	3.5 b
IAD/AHM-8eg60b1.5-2Sd1A	11.37-25-000	1.5 b	IAD/AHM-12mg50b3.5-2NDc1A	11.37-29-020	3.5 b
IAD/AHM-8eg45b1.5-1NDc1A	11.37-26-020	1.5 b	IAD/AHM-12mg60n6-1Sd1A	11.37-52-000	6.0 n
IAD/AHM-8eg45b1.5-2NDc1A	11.37-27-020	1.5 b	IAD/AHM-12mg60n6-2Sd1A	11.37-53-000	6.0 n
IAD/AHM-8eg60n3-1Wc1A **)	11.37-57-000	3.0 n	IAD/AHM-12mg60n6-1NDc1A	11.37-63-020	6.0 n
IAD/AHM-8eg60n3-1Sd1A **)	11.37-58-000	3.0 n	IAD/AHM-12mg60n6-2NDc1A	11.37-64-020	6.0 n
IAD/AHM-8eg60n3-2Wc1A **)	11.37-59-000	3.0 n			
IAD/AHM-8eg60n3-2Sd1A **)	11.37-60-000	3.0 n			
IAD/AHM-8eg45n3-1NDc1A **)	11.37-61-020	3.0 n			
IAD/AHM-8eg45n3-2NDc1A **)	11.37-62-020	3.0 n			
	*) b = flush m **) = supply	nting, $\mathrm{n}=$ non-flush request	ing, $\mathrm{t}=$ partly flush mounting		

Pulse Sensors, Inductive
 Series IAD/AHM-8eg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001
Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!

Wiring (1)

DC 3-poles, plug

Wiring (2)
DC 3-poles, plug

Euro Plug M8 with LED display YE from 4 sides visible

2.2.1.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn•Fon +49 7234790 • Fax +49 723479112 • info@klaschka.de • www.klaschka.de

Wiring (3)

DC 3-poles, plug

Euro Plug M12 with LED display YE from 4 sides visible

Euro Plug M12 with LED display YE from 4 sides visible

Wiring (5)
DC 3-poles, outgoing lead

Wiring (6)
DC 3-poles, outgoing lead

Inductive Proximity Switches, Inductive
Series IAD/AHM-12mg

Design; length		
Material of the sensing face / of the housing		
Nominal switching distance, mounting (see page1.0.4)		
Range secured switching distance		
Type designation, Ref. no. (Wiring)	NO plus-switching	NOp
	NC plus-switching	NCp
	NO and NC plus-switching	$\mathrm{NOp}+\mathrm{NCp}$
	NO plus-, NC minus-switching	$\mathrm{NOp}+\mathrm{NCn}$
	NO minus-switching	NOn
	NC minus-switching	NCn
Maximum switching frequency / Minimum damping period		
Wiring (connector or lead); number of wires		

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050 . In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208)
Manufactured according to DIN EN ISO 9001
Safety Regulations
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!

Wiring (1)

DC 3-poles, plug

Wiring (2)

Euro Plug M12 with LED display YE from 4 sides visible

Euro Plug M12 with LED display YE from 4 sides visible

2.2.2.1

Wiring (3)
DC 3-poles, outgoing lead

Wiring (4)
DC 3-poles, outgoing lead

Pulse Sensors

Type Double Pulse

Characteristics

Double pulse sensors of the type magnetic field are suitable for the generation of speed-proportional, phase-shifted pulse sequences. Thus the user can detect the rotational direction and/or direction of motion. For these sensors static Hall- or magneto-resistive elements can be used as sensing elements.

The double pulse sensors described here have been optimized for the scanning of specific racks and magnet wheels. We also manufacture and develop an individual system solution for your specific requirements.

Gearwheels or racks made of ferromagnetic steel (e.g. St 37) or magnetised belts, bars and wheels may be used as actuating elements.

When mounting the double pulse sensor the mounting position has to be considered. Please take the minimum width of the actuating element and information regarding the assembly of the sensor from the respective data sheets.

Mounting has to be accomplished in such a way that a vibration of the double pulse sensor and/or the actuating element is reliably prevented.

2.3.0.1

Pulse Sensors Type Double Pulse

		Switching distance			Switching distance
Type	Ref. No.	in mm	Type	Ref. No.	in mm
		Mounting *)			Mounting*)
HALL			magneto-resistive		
rectangular $16 \times 16 \times$ L			rectangular		
HDD-16ms60b1.5-5050ND1 **)	13.26-47-020	3.0 b	MDD-12aq50b0.4-55NK2 **)	13.21-51-020	1.0 b
			MDD-12aq50b0.4-55NK3 **)	13.21-58-020	1.0 b
rectangular $25 \times 12 \times$ L					
HDD-12aq50b0.4-55NK1	13.26-58-020	1.0 b			

*) $\mathrm{b}=$ flush mounting, $\mathrm{n}=$ non-flush mounting, $\mathrm{t}=$ partly flush mounting
${ }^{* *}$) = supply on request

Pulse Sensors, Double Pulse

Series HDD-16ms, -12aq

\quad Design; length
Material of the sensing face / of the housing

Nom. switching distance s for gear wheel - module 0.75/1/2/3/4; mounting

Air gap = actuating distance a	
Type designation, Ref. no.	NO plus-switching NOp
	NO plus-, NC minus-switching NOp + NCn
Switching frequency range	

Common Technical Data

Reduction factors Fe/ Non-ferrous metals	$1.0 / 0$
Hysteresis of the switching distances s	3 ... 20\%
Permissible ripple voltage	$\leq 10 \%$
Short-cirucuit-proof?	yes, for $\leq 20 \mathrm{~s}$
Protected against polarity reversal ?	yes

$\begin{array}{r}\text { Permissible operating voltage range } \\ \hline \text { Current consumption without load }\end{array}$
$\begin{array}{r}\text { Current consumption without load } \\ \hline \text { Load current }\end{array}$
Voltage drop over the switched output
$\begin{array}{r}\hline- \text { at load current } 0 \\ \hline- \text { at load current } 25 \mathrm{~mA} \\ \hline\end{array}$

| |
| :--- | | Ambient temperature range |
| :--- |

Lead type / standard lead length / number of wires x lead cross section
Utilization category according to IEC 60947-5-2 $\begin{array}{r}\text { Degree of protection according to 60529 } \\ \hline\end{array}$

| Permissible torque without / with toothed disc |
| ---: | Weight

$\square 16 \mathrm{~mm} \times 16 \mathrm{~mm}$; 60 mm		
PBT / CuZn		
(only for magnet ruler with pole length 3.06 mm) $\mathrm{s}=1.5 \mathrm{~mm}$; flush		
0.75 mm		
HDD-16ms60b1.5-5050ND1,	13.26-47-020	(1)
0 ... 15 kHz		
lead; 6 wires		

Recommended accessories

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001

Safety Regulations

Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 6-poles, RS-422 (26LS31), outgoing lead

$90 \mathrm{~g}+$ weight of the lead

Wiring (2)

For each sensor: DC 3-poles, push-pull, outgoing lead

Pulse Sensors, Double Pulse

Series MDD-12aq

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.

For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100 , lead length 0.5 m : Index -005 .

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208). Manufactured according to DIN EN ISO 9001

Safety Regulations

Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.
Subject to technical changes!

Wiring (1)
For each sensor: DC 3-poles, push-pull, outgoing lead

$90 \mathrm{~g}+$ weight of the lead

Characteristics

Heat-resistant pulse sensors of the type magnetic field were developed for applications in the extended temperature range (e. g. $-25^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$).

For customer-specific versions special coatings were used to allow the application under onerous conditions.

If you require special versions, please contact us in order to find a suitable solution.

When selecting the actuating element, please consider the same criteria as indicated for pulse sensors of the type magentic field (see page 2.1.0.1)

Pulse Sensors, Heat-Resistant Series HTD-11ms, HAD-18mg

For proximity switches with connectors: Please find the required connector with outgoing lead in chapter 12 "Accessories". Order separately.
For proximity switches with outgoing lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by the index 020 or 050. In case that deviating lengths are required, please indicate this in the re. no..
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005.

Wiring (1)
Plug
DC, 3-poles, push-pull, plug

Wiring (2)
DC 3-poles, push-pull, outgoing lead

Certifications

Proximity switches according to standard:
DIN EN 60 947-5-2 (VDE 0660 Part 208).
Manufactured according to DIN EN ISO 9001
Safety Regulations
Conection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (2)
DC 3-poles, push-pull, outgoing lead

Safety Elements
 Man and Machine

Right to Physical Integrity

The Right to Life and Physical Integrity is firmly anchored in the Federal Republic of Germany's Basic Constitutional Law.

This basic principle applies not only in our private surroundings but also where we go about our work. The legislature provides clear guidelines for this (excerpt):
"Machinery in Europe must satisfy the formal and basic health and safety requirements of the EC Directive governing Machinery ($98 / 37 / E C$). This European Directive must be applied to all machinery, interchangeable equipment and safety components that are initially put into service in the European Community (EC)."
The Machinery Directive has been translated, like many other EU Directives, into national standards.

Equipment and
Product Safety Act
GPSG
:---:
Ordinance
9.GPSGV
:---:
to
$98 / 37 / E G$
:---:
Directive
$98 / 37 / E G$

What is a machine as defined by the Machinery Directive?

"A machine as defined by this Directive is an assembly of linked parts or components, at least one of which moves, with the appropriate actuators, control and power circuits, etc., joined together for a specific application, in particular for the processing, treatment, moving or packaging of a material. Also included in the scope of application are safety components brought into service individually.

A machine is also deemed to be an assembly of machines which, in order to achieve the same end, are arranged and controlled so that they function as an integral whole.

This Directive does not apply to ... machinery whose only power source is directly applied manual effort, unless it is a machine used for lifting or lowering loads"
as well as a series of other instances of use that are not generally relevant for the industrial environment.

A, B and C Standards

The requirements of the Machinery Directive are concretised by the EN Standards which are split up into 3 hierarchically constructed category types.

Type A Standards

(Basic Standards) such as EN 292 "Safety of Machinery - Basic
Terms, General Design Guidelines" and EN 1050 "Safety of
Machinery - Principles for Risk Assessment" relate to basic regulations for machine safety.
Type B Standards
(Group Standards) such as EN 954-1 "Safety-Related Parts of Control Systems" deal with a safety aspect that is applicable to a broad range of machinery; they are, in turn, classified into standard categories B1 and B2.

Type B1 Standards

Specify regulations concerning superordinate safety aspects, such as ergonomic principles and safety gaps.

Type B2 Standards

Describe features of safety devices that may be used in different types of machinery - e.g. EN 1088 "Interlocking Devices with and without guards".

Type C Standards

(Specialist or Product Standards) relate to individual types of machinery and areas of application such as packaging, injection/blow moulding or bakery machinery.

Duties and Opportunities of the Machine or Plant Manufacturer.

1. Determination of the risk which depends on the machine or plant.

Here consideration is given to how severe possible injuries might be, how frequently a person remains in the hazardous area and, if necessary, whether there are possibilities for preventing this hazard.

The result of this consideration is a code number (control category in EN 954-1; SIL = Safety Integrity Level in EN 61508) that provides a reference as to what measures are to be taken to minimise risks.
2. Reduction of the risk by means of appropriate technical measures Enclosure/encasing of the hazardous area. Ensuring that accesses or interventions (e.g. for maintenance work or feeding in/removing workpieces) are only possible in the hazard-free state and that the machine or facility is brought safely into a hazard-free state when it is entered.
3. Minimisation of the remaining risk by informing the user

Highlighting of hazards in the operating instructions and instruction of the staff are both measures for reducing the remaining risk.
4. Assessment of whether the unavoidable risk is acceptable

If the remaining risk is still not acceptable, there is a jump back to step 2. The entire cycle is repeated until the remaining risk is sufficiently small.

Simplified Diagram:

Severity of the injury
S1: Minor injury
S2: Severe irreversible injury or more people or death of one person
S3: Death of several people, long-term major damaging environmental effects
S4: Catastropfic impacts, large number of deaths

Frequency and/or duratio of time spent
F1: Rare to occasional
F2: Frequent to continuous
Possibility of Preventing Hazards
P1: Possible under certain conditions
P2: Almost impossible

Non-Contacting SIDENT Safety Switch SIDENT Function and Method of Operation

Function

Safety zones in partly automated industrial plants are generally screened off by a system of safety fences and doors. The safety doors must be provided with safety locks or safety switches which comply with Safety Rating 3 or 4 conform the EN 954-1 (two-channel, reciprocal self-monitoring). A high degree of manipulation safety is essential.

Method of Operation of the Non-Contacting SIDENT Safety Switch

The safety switch and actuating element work together noncontacting. The reading head emitts an alternating field. The dimensions of the alternating field depend on he dimensions of the switch and determine the range, and thus the switching distance of the sensor.

Release is only given as long as the actuating element is within the actuation zone of the switch and the number of the actuating element is identical with that of the switch.

At this moment, the two green LED's of the safety switch are switched on. The hysteresis zone is indicated by a flashing of the red LED, while the green LED's are still blinking. Both outputs remain either connected or disconnected, depending on the direction of the movement and show the typical hysteresis behaviour. After leaving the hysteresis zone, both green LED‘s extinguish and a red LED blinks.
The code number in the safety switch undergoes a two-channel analysis procedure. The two channels monitor each other on a reciprocal basis. Every channel has got one output transistor which is put externally, e.g. from the safety PLC, at the supply voltage. The safety switch monitors the outputs and keeps them in open circuit status if either channel shows a short circuit between output and supply voltage. A short circuit to earth or low voltage at one output leads to the switching-off of both outputs. They are checked periodically to determine if the fault is still present. This results in short pulses at the non-faulty channel and is, at the same time, a short- circuit-protection.

The evaluation device is typically a safety PLC (= Programmable Logic Controller). It takes over the voltage supply of the safety switch and its both outputs. The supply of the outputs can give short timing signals which allow the PLC to check the connecting leads for circuit breaks and cross circuits A compatibility list, which is continuously updated, is available on demand.

Manipulation Safety

The SIDENT/III and IV safety switches, together with their actuating element SIDENT/B, work using the identification principle with a 6digit safety code, which is issued only once. This means that only one "key", namely the matching actuating element with its imprinted code fits each "lock" on the SIDENT safety switch.

Versions

The different versions differ with regard to the Safety Rating as well as in design. Please find the Technical Data on the following pages.
Both, switch and actuating element, can be designed - up to a certain degree - according to customer specifications. Safety switch and actuating element can be designed in round housings, with or without thread.
The ability to be coded and Safety Rating are maintained in all versions.

Principal design of the the SIDENT safety switch with its twochannel structure.

Actuation Zone

The diagram on the right is received in case of parallel and centric alignment of the active surfaces of safety switch and actuating element.

If the sensing faces are inclined towards each other at an angle of up to 30°, deviations by $\pm 10 \%$ from the standard values occur. Adjacent metal faces influence the actuation zone in a similar way.

Mounting

The safety switch is normally attached to the door frame; whereas the actuating element, which requires no connecting leads, is fixed to the door itself. In case of a parallel and centric allignment of the sensing faces of safety switch and actuating element the following values apply (for this see also the Technical Data).

Switching distance	$s=20 \mathrm{~mm}$
Width of the operating range	$\mathrm{W}=34 \mathrm{~mm}$
Depth of the operating range	$\mathrm{D}=24 \mathrm{~mm}$
Width of the hysteresis	$\mathrm{h}=1 \ldots 2 \mathrm{~mm}$.

The mounting position of the axis switch-actuating element is arbitrary. Regarding form and size of the operating zone it is insignificant which way the actuating element is moved towards the safety switch or moved away from it.
If the door is fitted with a bolt, the actuating element can also be fitted directly thereto. An inadvertent closing of the door does not activate the safety switch. In addition, a u-bolt can be fitted in order to prevent an inadvertent locking by the bolt.

Application Examples

Application examples for the use of safety relays can be supplied on demand.

Important Notes

The products described here were developed in order to take over safety-related functions as part of an entire plant or a machine. A complete safety-related system usually contains sensors, evaluation units, signal devices and concepts for a safe disconnection.

The manufacturer of a plant or a machine has the responsibility to guarantee the correct overall function. Klaschka GmbH \& Co. KG is not able to guarantee all characteristics of an entire plant or a machine, which was not conceived by Klaschka.
Furthermore, Klaschka also does not take over any liability for recommendations, which are given and/or implied by this description. On basis of this description no new guarantee, warranty or liability claims, which exceed our terms of delivery, can be derived.
Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Swinging door

Sliding door

Intended Use

The task of the SIDENT/IV safety switches is the monitoring of mobile separating safety devices. These have to guarantee that dangerbringing works at and with the machine or plant can be executed only if the safety device is closed.
The SIDENT/IV safety switch can accomplish its task only if it is employed, wired and installed according to the regulations of the manufacturer. In all other respects the relevant requirements and regulations must be kept.
These are:

- EN 954-1 - safety-related parts of control devices,
- EN 1088 - locking devices in connection with separating safety devices,
- EN 60204-1 - electrical equipment of machines,
- EN 60947-5-3 - requirements for proximity switches with a defined action under fault conditions.

For the machine or plant itself a risk evaluation has to be accomplished.
These are based on the following standards:

- EN 954-1 - safety-related parts of control devices,
- EN 1050 - safety of machines, risk evaluation.

The described product was developed, produced, inspected and documented under consideration of the relevant safety standards. When observing the guidelines with regard to projecting, installation and appropriate use, as indicated in the manual for operation and installation, no dangers to property or the health of persons will arise due to SIDENT.

Safety Switches

Series SIDENT/III

	Design; length
	Material of the sensing face / of the housing
Nominal switching distance, mounting (see page 1.0.4)	
Range secured switching distance	
Type designation, Ref. no. (Wiring)	NO plus-switching $2 \times$ NOp
Maximum switching frequency / Minimum damping period	
	Wiring (connector or lead); number of wires

Certifications

Proximity switch according to standard: DIN EN 60 947-5-3: 2000-02. 73/23/EWG „Low voltage guideline"
89/336/EWG „EMC guidelines"
98/37/EG „Machinery guideline"
Produced according to DIN EN ISO 9001

Certified by the German Association for Industrial Safety in Precision Mechanics and Electrotecnics.

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or by instructed personnel.
Subject to technical changes!

Wiring (1)

Plug M12
DC 6-poles, plug

Wiring (2)
DC 6-poles, plug

Plug M23

5.1.1.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn•Fon +49 7234790 • Fax +49 723479112 •info@klaschka.de •www.klaschka.de

Safety Switches

Series SIDENT/IV

Certifications

Proximity switch according to standard: DIN EN 60 947-5-3: 2000-02.
73/23/EWG „Low voltage guideline"
89/336/EWG „EMC guidelines"
98/37/EG „Machinery guideline"
Produced according to DIN EN ISO 9001

Certified by the German Association for Industrial Safety in Precision Mechanics and Electrotechnics.

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or by instructed personnel.

Subject to technical changes!

Wiring (1)

DC 6-poles, plug

Wiring (2)
DC 6-poles, Coninvers RC plug

Wiring (3)

DC 7-poles, Amphenol C 164 N plug

Plug M26

Safety Switches

Series SIDENT/IV

Certifications

Proximity switch according to standard: DIN EN 60 947-5-3: 2000-02
73/23/EWG „Low voltage guideline"
89/336/EWG „EMC guidelines"
98/37/EG „Machinery guideline"
Produced according to DIN EN ISO 9001

Certified by the German Association for Industrial Safety in Precision Mechanics and Electrotechnics.

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or by instructed personnel

Subject to technical changes!

5.1.2.3

\qquad

Safety Switches

Series Actuating Elements SIDENT/B

Certifications

Proximity switch according to standard: DIN EN 60 947-5-3: 2000-02.
73/23/EWG „Low voltage guideline"
89/336/EWG „EMC guidelines"
98/37/EG „Machinery guideline"
Produced according to DIN EN ISO 9001

LISTED

Certified by the German Association for Industrial Safety in Precision Mechanics and Electrotechnics.

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or by instructed personnel.

Subject to technical changes!
\qquad
\qquad
\qquad

Non-Contacting SIDENT/IV Safety Switch Roller- / Lift Gates and Windows Function, Construction and Versions

Function and Construction

Roller gates are frequently installed in safety fences. They allow a regular or individual access to production plants, which may be necessary for the inserting or removal of work pieces. If the roller gate is not completely closed, it has to be guaranteed that the plant operator cannot be endangered.

Safety switches, which are integrated into the safety chain of the plant control, serve for recognising the safe position (gate closed). Independently of it further position switches are used, which control the movement of the gate and detect its position.

The advantages of non-contact transponder-based safety switches (insensitivity to dirt, mechanical adjustment, manipulation etc.) can also be used for recognising and controlling the gate position. This special type of SIDENT/IV does not only monitor the "safe" position of the gate; it is further able to detect and to report a total of five positions (end positions, switching the speed from slow to fast and from fast to slow).

The SIDENT/IV is mounted at a suitable place of the gate (e.g. on the side) so that it can detect the actuating element, which is mounted at the gate or integrated into the gate itself. A specific code is assigned to each of the five actuating elements ("safe" end position, two or three changeover position and one not safety-related end position).

On basis of this specific code SIDENT/IV is able to recognise which actuating element is momentarily in the reading range.

All electronic components of the safety switch are fitted in just one sensor housing. The connection is made by connectors. Three LED's indicate the present status of the "safe" part (red for "no transponder recognised" and/or "error" and 2 x green for "transponder recognised"), four further LED's indicate the present position.

The (two-channel) evaluation electronics of the safety-related part is electrically isolated from that part of the switch, which only controls the movement, so that no reaction is possible. Only the reading head, which is turned towards the actuating elements, is common to both systems.

Versions

SIDENT/IV for 4 positions
The safety-related position (gate closed) as well as position 1 of the not safety-related part are identical. This means, that the safetyrelated outputs and one not safety-related output respond to one and the same actuating element.

SIDENT/IV for 5 positions

The safety-related position (gate closed) isn't identical to any of the not safety-related positions. The switch-off- and switching points are independent of the safe position (gate closed).

SIDENT/IV for 4 positions with storage behaviour

The safety-related position (gate closed) and position 1 of the not safety-related part are identical. For the direct activation of the frequency converters the positions 2 and position 3 are equipped with storage behaviour. When passing position 2 the output A3.2 obtains the status "High" and maintains it until position 1 has been reached When opening the gate and passing position 3 the output A3.3 obtains the status "High". When position 4 has been reached (upper end position) the output is reset to status "Low" and A3.4 is activated.

SIDENT/IV with 2 safe positions and storage behaviour (gate with two safe positions)
The two safety-related positions (gate closed in front and/or in the back) of the not safety-related part are identical. For the direct activation of the frequency converters the switchover positions 2 and 3 are equipped with storage behaviour. When passing position 2 the output A3.2 obtains the status "High" and maintains it until position 1 has been reached (gate closed in front). When opening the gate and passing position 3, the output A3.3 obtains the status "High". When reaching position 4 (door closed in back) the output is reset on status "Low" and A3.1 is activated.

Application example with 4 positions:
Conventional roller gate monitoring:

Innovative roller gate monitoring:

KLASCHKA
Elektronik + Automation

Principle of the SIDENT/IV Safety Switch

The safety switch SIDENT/IV works together with its actuating element SIDENT/B using the identification principle with a 6 -digit safety code which is issued only once. Only one "key", namely the matching SIDENT/B actuating element with its imprinted code, actually fits each "lock" of the SIDENT/IV safety switch.
The safety switch and actuating element work on a non-contacting basis. Release is effected only when the actuating element is within the actuation zone of the switch and the code number of the actuating element matches that of the switch. At this point, the two green safety-switch indicators ($\mathrm{CH} 1+\mathrm{CH} 2$) are lit. The hysteresis zone is identified by the blinking of the red display (ERR), while the green indicators continue to flash (both outputs remain either connected or disconnected, depending on the direction of the movement, and show the typical hysteresis behaviour). After exit from the hysteresis zone, both green indicators extinguish and a red indicator blinks.
The code numbers in the safety switch undergo a two-channel analysis procedure. The two channels monitor each other on a reciprocal basis. Each channel is provided with one output which features two output transistors. The output is continuously monitored also in a switched condition.
By the monitoring of the outputs a short-circuit between output and supply is recognised and a switching-on is prevented. In the event of short-circuit to earth or low voltage at one output, both outputs are switched-off. This results in short pulses on the non-faulty channel and, at the same time, constitutes a short-circuit-protection during normal operation. A resetting of the short-circuit-monitoring is not necessary due to the intermittent operation mode.
The evaluation device is typically a safety PLC (programmable logic controller) or an emergency relay. It supplies the operating voltage to the safety switch and its two outputs.

The supply of the outputs can give short timing signals which allow the PLC to check the connecting leads for circuit breaks and crosscircuits (for further details, refer to the technical data of the respective safety PLC). These are tolerated by SIDENT/IV to a large extent and do not impair its safety function. However, we recommend to compare with our compatibility list, which is continuously updated and can be requested on demand.

Actuation Zone

In case of parallel and centric alignment of the sensing faces of safety switch and actuating element, the following values apply. If the sensing faces are inclined at an angle of up to 30° to each other, deviations by $\pm 10 \%$ from the standard values occur.

Switching distance	$\mathrm{s}=20 \mathrm{~mm}$
Width of the actuation zone	$\mathrm{W}=34 \mathrm{~mm}$
Depth of the actuation zone	$\mathrm{D}=24 \mathrm{~mm}$
Width of the hysteresis	$\mathrm{h}=1 \ldots 2 \mathrm{~mm}$

Non-Contacting SIDENT/IV Roller- / Lift Gates and Windows
 LED Display

The status of the SIDENT/IV (actuated/not actuated) and possible error situations can be derived from the LED indication. Some possibilities are represented below (version with 4 positions)

Situation	LED CH1	LED CH2	LED error	LED A3.1	LED A3.2	LED A3.3	LED A3.4
Normal operafon							
Sensor actuated with safe position	on	on	off	on	off	off	off
position 2	off	off	on	off	on	off	off
position 3	off	off	on	off	off	on	off
position 4	off	off	on	off	off	off	on
Sensor not actuated	off	off	on	off	off	off	off
Hysteresis zone of the correspond. actuator	on	on	blinks	on	on	on	on
Error situation (comesponding actuator in the actuating zone)							
Channel 1 defective	off	on	on	off	off	off	off
Channel 2 defective	on	off	on	off	off	off	off
Short-circuit Channel 1*	blinks	blinks	on	off	off	off	off
Short-circuit Channel 2*	blinks	blinks	on	off	off	off	off
Short-circuit A3.1	on	on	off	blinks	off	off	off
Short-circuit A3.2	off	off	off	off	blinks	off	off
Short-circuit A3.3	off	off	off	off	off	blinks	off
Short-circuit A3.4	off	off	off	off	off	off	blinks

Signal sequence SIDENT/IV, ref. no. 13.14-47 for 4 positions without storage behaviour

Signal sequence SIDENT/IV, ref. no. 13.14-47-201 for 4 positions with storage behaviour

Signal sequence SIDENT/IV, ref. no. 13.14-47-100 for 5 positions without storage behaviour

Signal sequence SIDENT/IV, ref. no. 13.14-47-202 with 2 safe positions and storage behaviour

The sensor head is mounted by Klaschka in such a way so that the sensing face shows forward. The sensing face can be recognized at its impressed, concentric rings. In the case that another alignment is required, the orientation of the sensing face can be changed in two directions.

Non-Contacting Safety Switches
 Series SIDENT/IV for Roller- / Lift Gates and Windows

$\square 40 \mathrm{~mm} \times 40 \mathrm{~m}$	114 mm		$\square 40 \mathrm{~mm} \times 40 \mathrm{~mm} ; 114 \mathrm{~mm}$		
PBT / P			PBT / PBT		
20 mm , no	lush		20 mm , non-flush		
$1 . . .16 .2 \mathrm{~mm}$			$1 . .16 .2 \mathrm{~mm}$		
SIDENT/IV-40fv-1111ZI1D,	13.14-47	(1)	SIDENT/IV-40fv-1111ZI1D	13.14-47-10	
$1 \mathrm{~Hz} / \geq 0.5 \mathrm{~s}$			1 Hz I \geq		
connector M23; 12 wires			connector M23; 12 wires		

Technical Data for Position Recognition $\begin{array}{r}\hline \\ \hline \text { Permissible operating voltage range L3 }+ \\ \hline \text { Current consumption without load } \\ \hline\end{array}$

$15 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC	$15 \ldots \underline{24 . . .30 \vee ~ D C ~}$
$<45 \mathrm{~mA}$	$<45 \mathrm{~mA}$
typically 1.75 V DC (A3.1 ... A3.4)	typically 1.75 V DC (A3.1 ... A3.4)
< 400 mA / < 200 mA (A3.1 ... A3.4)	< $400 \mathrm{~mA} /<200 \mathrm{~mA}$ (A3.1 ... A3.4)
typically 10 ms	typically 10 ms
typically 200 ms	typically 200 ms
ca. 1 s	ca. 1 s
maximally $1 \mathrm{~m} / \mathrm{s}$	maximally $1 \mathrm{~m} / \mathrm{s}$
yes, clocking / yes	yes, clocking / yes
$4 \times \mathrm{GN}$ for position	$4 \times \mathrm{GN}$ for position
300 m	300 m
see chapter 12	see chapter 12

Certifications

Proximity switch according to standard: DIN EN 60 947-5-3: 2000-02.
73/23/EWG „Low voltage guideline"
89/336/EWG „EMC guidelines"
98/37/EG „Machinery guideline"
Produced according to DIN EN ISO 9001

Certified by the German Association for Industrial Safety in Precision Mechanics and Electrotechnics.
$\begin{array}{ll}\text { Design Type Test Certification } & 03088 \\ \text { GS Test Certificate } & 03089\end{array}$
GS Test Certificate

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or by instructed personnel.

Subject to technical changes!

Wiring (1)

Plug M23
DC 12-poles, plug

Optionally
shielded

$\square \mathbf{4 0 m m \times 4 0 ~ m m ; ~} 114 \mathrm{~mm}$	\square 40mm x $40 \mathrm{~mm} ; 114 \mathrm{~mm}$
PBT / PBT	PBT / PBT
20 mm , non-flush	20 mm , non-flush
1 .. 16.2 mm	1 ... 16.2 mm
SIDENT/IV-40fv-1111ZI1D, 13.14-47-201 (2)	SIDENT/IV-40fv-1111ZI1D, 13.14-47-202 (2)
$1 \mathrm{~Hz} / \geq 0.5 \mathrm{~s}$	$1 \mathrm{~Hz} / \geq 0.5 \mathrm{~s}$
connector M23; 12 wires	connector M23; 12 wires

*) Orientation variable by reconstruction

$15 . .24 . .30 \mathrm{~V}$ DC	$15 . .24 . .30 \mathrm{~V}$ DC
$<45 \mathrm{~mA}$	$<45 \mathrm{~mA}$
typically 1.75 V DC (A3.1 ... A3.4)	typically 1.75 V DC (A3.1 ... A3.4)
< 400 mA / < 200 mA (A3.1 ... A3.4)	< $400 \mathrm{~mA} \mathrm{/} \mathrm{<} 200 \mathrm{~mA}$ (A3.1 ... A3.4)
typically 10 ms	typically 10 ms
typically 200 ms	typically 200 ms
ati A3.2 + A3.3	bei A3.2 + A3.3
ca. 1 s	ca. 1 s
maximally $1 \mathrm{~m} / \mathrm{s}$	maximally $1 \mathrm{~m} / \mathrm{s}$
yes, clocking / yes	yes, clocking / yes
$4 \times$ GN for position	$4 \times$ GN for position
300 m	300 m
see chapter 12	see chapter 12

Wiring (2)

DC 12-poles, plug

Plug M23

Non-Contacting Safety Switches
 Series Actuating Elements SIDENT/Bfor Roller- / Lift Gates and Windows

Certifications

Proximity switch according to standard: DIN EN 60 947-5-3: 2000-02.
73/23/EWG „Low voltage guideline"
89/336/EWG „EMC guidelines"
98/37/EG „Machinery guideline"
Produced according to DIN EN ISO 9001

Certified by the German Association for Industrial Safety in Precision Mechanics and Electrotechnics.

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or by instructed personnel.

Subject to technical changes!
5.2.2.1. © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax $+49723479112 \cdot$ info@klaschka.de • www.klaschka.de

Safety Components

Series Safety Door Handles with SIDENT

Certifications

Proximity switch according to standard: DIN EN 60 947-5-3: 2000-02. 73/23/EWG „Low voltage guideline"
89/336/EWG „EMC guidelines"
98/37/EG „Machinery guideline"
Produced according to DIN EN ISO 9001

LISTED
Certified by the German Association for Industrial Safety in Precision Mechanics and Electrotechnics.
$\begin{array}{ll}\text { Design Type Test Certification } & 07003 / 06188 \\ \text { GS Test Certificate } & 07004 / 06189\end{array}$

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or by instructed personnel.
Subject to technical changes!

Specific Sensors
 Foil Detection Sensors

Characteristics

In its response area the foil detection sensor reacts with the same distance sensitivity to all thin and thick layers and solid parts made of arbitrary metals. Environmental influences can be adapted by means of an integrated adjustment potentiometer.

The sensivity of the sensor depends on the size of the metal surface area which is parallel to the sensing face of the sensor. The diagram on the right shows the dependence of the maximum sensing switching distance s in relation to the nominal switching distance sn of the sensor as function of the ratio of diameter of the object to the diameter of the sensing face.

The sensor reacts with very short response times of less than $50 \mu \mathrm{~s}$ and is therefore capable of detecting very short parts, which move with a very high speed.

The sensor is magnetic field-resistant up to 150 mTesla . The presence of strong magnetic DC- and AC-fields, e.g. of engines or relays, do not lead to any disturbance or destruction of the sensor.

The sensor is available in three different housing sizes for sensing distances up to 70 mm . Special housings can be supplied on request.
Mounting is possible in a flush and a non-flush way. The permissible temperature range is between $+10^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$. With values of sn > nominal switching distance and thus greater sensivity, the temperature range is limited further.

Application

In the packaging industry, in the food and mail order business metalcoated plastic- and metal foils are frequently used.

Examples are:

- Carton packaging for milk and fruit juices,
- Packaging of chocolate and pralines,
- Cigarette packaging.

The foil detection sensor detects metallic coatings and/or the foil even through non-metallic partition walls and plastic packaging. It can be applied as a presence detector as well as for counting procedures.
In addition, the sensor is also suitable for the dispatch of modern data media in paper- or plastic packing, as CDs, DVDs or SIM memory cards have several metallic coatings. These coatings are typically of aluminium or copper and have layer thicknesses of less than $1 \mu \mathrm{~m}$. In sorting plants, the metal foil detection sensor safely detects a CD-ROM or a SIM card in a padded envelope.
When using the sensor for quantity counting, for example in packaging machines, the response time of the sensor and thus the attainable highest counting speed play an important role. Having a response time of less than 50 us, the sensor detects parts with the diameter of that of a 1 Cent coin.
($=16.25 \mathrm{~mm}$) in a distance of 20 mm and which move with a speed of $150 \mathrm{~m} / \mathrm{s}$.
Thus the sensor is also suitable for the detection of smallest parts, e.g. of coins after embossment. Production speeds up to over 100 pieces per second can be reliably controlled.
Another possible use is checking the presence of a metal coating in metal-plated injection-moulded housings.

Function diagram of the coating plant: metal wire (1), vaporizer (2), coating drum (3) and measuring rolls (4)

Foil detection sensor IED/AHM-80aq40b40-12Sd1B

IED/AHM-40aq40b15-12Sd1B
IED/AHM-30mg50b10-12Sd1A

Foil Detection Sensor
Switching distance as a function of the diameter of the object

Application Example

CD and SIM - detection in a padded envelope

Foil Detection Sensors

| Type |
| :--- | :--- | :--- | :--- | :--- |

*) $b=$ flush mounting, $n=$ non-flush mounting, $t=$ partly flush mounting
**) = supply on request

Specific Sensors
 Foil Detection Sensors IED/AHM-30mg, -40aq, -80aq

Syper Type designation, Ref. no.

Common Technical Data

Reduction factor $\mathbf{1}$ for all metals

Reduction factor	1 for all metals
Hysteresis of the switching point s	< 15\%
Permissible ripply voltage	$\leq 10 \%$
Short-circuit-protection?	yes, clocking
Protected against polarity reversal ?	yes
Voltage drop over a closed contact	$\leq 2.5 \mathrm{~V}$ DC
Ambient temperature range	$+10 \ldots+60^{\circ} \mathrm{C}$

Note

For values $\mathrm{sn}>40 \mathrm{~mm}$ the ambient temperature range is insignificantly reduced. This depends a.o. on the adjusted switching distance and the environmental conditioins. The adjustment of the switch should be done in a mounted condition. With values $\mathrm{sn}>70 \mathrm{~mm}$ a reliable function cannot be guaranteed

$10 \ldots \underline{24} \ldots 30 \mathrm{~V}$ DC
$\leq 30 \mathrm{~mA}$
$\leq 200 \mathrm{~mA}$
75 V DC
$\leq 1.0 \mu \mathrm{~F}$
16.5 mm
YE for actuated
-
500 m
IP 67
II, 回
$150 \mathrm{Nm} /<200 \mathrm{Nm}$
75 g

For proximity switches with connectors: Please find the required connector with connecting lead in chapter 12 "Accessories". Order separately
For proximity switches with connecting lead: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of the ref. no. by index -020 or -050 . In case that deviating lengths are required, please indicate this in the ref. no..
Examples: Lead length 10.0 m : Index -100, lead length 0.5 m : Index -005 .

$10 \ldots \underline{24} \ldots 30 \mathrm{~V} \mathrm{DC}$
$\leq 30 \mathrm{~mA}$
$\leq 200 \mathrm{~mA}$
75 V DC
$\leq 1.0 \mu \mathrm{~F}$
78 mm
GN for

GN for operation, YE for actuated

see chapter 12
see chapter 12
Wiring
DC 4-poles, plug

Specific Sensors

IND Sensors for Seam Detection at Metal Tubes

Task

Metal tubes are delivered on coils. These tubes are then fed into a processing machine. The seam between two succeeding tube sections must be reliably recognised in order to avoid damages at the tool and the machine.

Tubes made of copper, aluminium, high-grade steel, steel or other suitable metals and metal alloys are used for the production of tubemachined parts, e.g. fittings, in tube-bending machines. The tube insertion frequently happens off a coil.
The ends of succeeding tube sections are connected with each other by pressing on a short tube piece with a smaller diameter.

The sensor detects the seams of the tube passing through and generates a pulse which lasts several hundred milliseconds. The machine is stopped and the seam is detached.

The sensor is available in two different sensor sizes for tube diameters from 12 to 22 mm and from 22 to 32 mm . Sensors for other tube diameters are available on request.

The sensor has a permissible ambient temperature range between $+10^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$.

Principal Mode of Function

By means of an installed potentiometer the sensor can be adjusted to the tube diameter and in its sensitivity.

When the tube is passing through, the seam releases a short signal at the output of the IND sensor which is extended to approx. 300 ms by an installed time function element. The tube speed can thereby reach $1 \mathrm{~m} / \mathrm{s}$. This signal can be used for stopping the tube transport.

If no tube is inserted, a permanent signal appears at output A.
The output current IA may maximally be 200 mA .
The output signal A can be processed in the PLC-control of the machine.

The voltage supply range of the sensor is $12 \ldots 24 \ldots 30 \vee \mathrm{DC}$.

Application

The IND sensor is used for the seam detection after winding off a tube from a coil. The sensor is mounted before the tube enters the machine. Between sensor and intake into the machine sufficient place must be available for stopping the tube movement. The passage of the tube through the sensor must be sufficiently soothed by levelling rollers which are placed in front of and behind the sensor (side- and height fluctuations < 1 mm).

The sensor can be applied in all tube-processing machines, where the tube is supplied off a coil and where the feeding of a joint sleeve connecting tube sections must be prevented.

InD Sensor for Seam Detection at Metal Tubes

Signal sequence

IND Sensors for Seam Detection at Metal Tubes

			For tube		Max.
Type	Ref. No.	Series	diameter	Mounting	passage width
			in mm		in mm
IND/A-45as95n22...32-1Sd1A **)	15.16-01	Specific sensor	$22 . . .32$	Mounted on	45
IND/A-30as95n12...22-1Sd1A **)	15.16-02	Specific sensor	$12 \ldots 22$	Mounted on	33

**) = supply on request

Specific Sensors

Seam Detection IND-45as, -33as

	Sensor principle; design; length;
Width; height	
Material of the sensing face / of the housing	
Fork width; applicable for tube- \varnothing	
Mounting dimensions ($1 \times \mathrm{w}$)	

Common Technical Data	
Suitability	for all non-ferromagnetic
	metals
Permissible ripple of the operating voltage	$\leq 10 \%$
Short-circuit-proof?	yes, clocking
Protected against polarity reversal ?	yes
Voltage drop over a closed contact	$\leq 2.5 \mathrm{~V}$ DC
Ambient temperature range	$+10 \ldots+60^{\circ} \mathrm{C}$

	Permissible operating voltage range
	Current consumption without load
Load current for each output	
Rated insulation voltage	
	Permissibly capacity at the output
\varnothing Sensing face	

	Function indication ?
Lead type / standard lead length / number of cores \times lead cross section	

For proximity switches with connectors: Please find the required connector with
lead connection in chapter 12 „Accessories". Order separately

Wiring (1)
DC 4-poles, plug

Euro plug M12
For proximity switches with lead connection: The standard lead length is 2.0 m and/or 5.0 m . Please indicate deviating lengths in the ref. no. index.
Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005.

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel
Subject to technical changes!

Specific Sensors

IVA Inductive Valve Position Sensor

Task

The task of the inductive IVA valve position sensor is to convert the position of the manually operated actuator at one- or multi-position servo valves into an analogous end signal by interrogation of the tappet.

The inductive principle used shall be applicable to different tappet dimensions and stroke paths. The single-sided actuation out of an idle position has to be realisable as well as a double-sided actuation out of a central position.

The admissible ambient temperature range shall cover the range from $-40^{\circ} \mathrm{C}$ up to $+105^{\circ} \mathrm{C}$ (optionally $+125^{\circ} \mathrm{C}$).

With an operating voltage of $+12 \ldots 24 \ldots 30$ V DC the output voltage u via stroke path w shall range from 0 V via 5 V (central position) up to 10 V with a double-sided actuation, from 0 V (initial position) up to 10 V with a single-faced actuation.

The sensor shall be inexpensive and easy to be installed.

Principal Mode of Function

By its outer appearance the valve position sensor looks like a normal inductive sensor, but due to the design of the actuator and a specific circuit it is especially adapted to its task.
The tappet as actuator consists of three sections: A steel section, an air gap and a section of non-ferrous metal, e.g. aluminium.

These three different sections of the actuator generate an S-shaped output voltage signal over the stroke path. Its gradient can be modified by the formation of the width of the air gap, as shown in the charts on the right page.

The air gap width can be varied. If it exceeds a certain degree, a low gradient develops in the central position. Thus an adaptation to the stroke path required can be realised. A further adaptation can be achieved by deforming the faces of the metallic sections on either side up to the air gap, e. g. by chamfering the faces by 45°.
The output signal $u=0 \ldots 10 \mathrm{~V}$ DC, which is analogous to the stroke path, can be processed via an analogous input in a programmable controller, which we gladly supply on request.

The supply voltage of the sensor is $12 \ldots 24 \ldots 30 \vee \mathrm{DC}$.

Application

The IVA sensor is mainly used as valve position sensor for manually actuated sensor valves, but can also be used as actual value sensor at actuating elements of any type. Examples are:

- Handling facilities
- Lifting tables
- Doors
- Combinations break - coupling
- Pedal positions

IVA Sensor for Position Detection for Valves with Double-Sided Action
Principal signal trace

IVA Valve Position Sensor

			Travel	Mounting	\emptyset
Type	Ref. No.	Series	range		Sensing face
			in mm		in mm
IVA-18ms41b $\pm 6-1 \mathrm{Pkc} 1 / 1$	13.31-01	valve position	$\pm 6 \ldots \pm 10$	flush	16.5

Specific Sensors Valve Position Sensor IVA

	Sensor principle; design; length
	Material of the sensing face / of the housing

These values refer to the specified actuator geometry:

Steel (Fe) ... 5 mm air gap ... Aluminium (AI).

For proximity switches with lead connection: The standard length is 2.0 m and/or 5.0 m . Lead lengths are marked at the end of each ref. no. by the index 020 and/or -050. Please indicate deviating lengths in the ref. no. index.
Examples: Lead length 10.0 m: Index -100, lead length 0.5 m : Index -005

Certifications

Proximity switches according to standard: DIN EN 60 947-5-2 (VDE 0660 Part 208) Manufactured according to DIN EN ISO 9001

Safety Regulations

Connection, start-up and maintenance may only be accomplished by specialists or instructed personnel.

Subject to technical changes!

Wiring (1)
DC 3-poles, lead connection

Output function with 5 mm air gap

11.8.1.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax +49 723479112 • info@klaschka.de • www.klaschka.de
\qquad

Connectors, Leads, Adaptors, Distributors
Overview

\square

KLASCHKA
Elektronik + Automation

Code for the Type Designation

Example of a type code

Consecuctive number

= Sensor- I actor accessories socket M12 angled, 4 -poles, green and yellow indicators. PVC radiation cross-linked lead, 3 -lines, cross section of single line $0.34 \mathrm{~m}^{\wedge} 2$, unshielded lead, diameter of lead jacket 4.5 mm , black lead jacket

For leads with connectors on both ends the number block between 2 and 5 of the type code of the second plug is entered separated by a backslash.

Example: JSM12U4gy / LP40.34u3.6BK / SM12S4

= Sensor- / actor accessories socket M12 straight, 4-poles, indicator green and yellow. PUR-lead, 4 -poles, cross section of single line $0.34 \mathrm{~m}^{\wedge} 2$, unshielded lead, diameter of lead jacket 3.6 mm, black lead jacket; plug M12 straight, 4 -poles, without indicator.

For connectors without lead the numbers between 7 and 14 of the type code are omitted.
Example: JSM8S3
= Sensor- / actor accessories plug M8 straight, 3-poles, without indicator

For leads without connectors the numbers between 2 and 6 of the type code are omitted.
Example: JLH3x0.34u4.5BK
= PVC radiation cross-linked lead, 3-poles, cross section of single line $0.34 \mathrm{~m}^{\wedge} 2$, unshielded lead, diameter of lead jacket 4.5 mm , black lead jacket
Versions with $\mathbf{2}$ equal plugs, 2 equal leads and 1 terminating plug have the follwoing type code:

JS2xM8U3gy / L2xP3x0.34u3.6BK / SM12S4.

7	(J) L Sensor / actor accessories lead
8	Lead Type, material of lead jacket N PVC H PVC radiation cross-linked P PUR Q PUR welding spark-proof T Teflon / special lead
9	Number of lead lines
11	Cross section of single line in 0.01 mm^2
12	Shield u unshielded lead k coaxial lead s single shield t double shield v pairwise stranded without shield w pairwise stranded with shield \mathbf{x} pairwise stranded with double shield
13	Diameter of lead jacket in mm
14	Colour of lead jacket
	BK black GN green PK pink
	BN brown BU blue TQ turquoise
	RD red VT violet TR transparent
	OG orange GY grey
	YE yellow WH white

Ref. No.
 for Identification of Lead Length and Lead Type

For the order information the type code and ref. no. have to be indicated. The ref. no. of accessories with leads indicates

- the length of the lead in 0.1 m-steps
- the lead type in capital letters according to the consecutive number 8 in the type code in a 4-digit annex to the ref. no..
Scheme:
Ref. no. 13.97-16-020Q the lead has a length of 2.0 m , the lead jacket is made of PUR, welding spark-proof

Connectors with leads are supplied in 3 standard lengths, on customer request - against an extra charge - also in special lengths:

Standard lengths:	-020	lead length 2.0 m -050 lead length 5.0 m lead length 10.0 m
Example for special lengths: -100	-150 Q	lead length 15.0 m, PUR-lead welding spark-proof lead length 0.3 m PVC-lead

Accessories for Sensors

Cordsets with M8- and M12- Connectors

12.1.1.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn •Fon $+497234790 \cdot$ Fax $+49723479112 \cdot$ info@klaschka.de \cdot www.klaschka.de

Accessories for Sensors
Field Attachable Sockets

12.1.2.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax $+49723479112 \cdot$ info@klaschka.de • www.klaschka.de

lead socket M12; screwable	lead socket M18; srewable	lead socket M23; solderable	socket V28; screwable
straight	straight	straight	angled
5-poles: JSM12U5; 13.98-09	4-poles: JSM18U4; 13.98-13	12-poles: JSM23U12; 13.98-15	5-poles: JSV28V5; 13.98-19
8-poles: JSM12U8; 13.98-10		19-poles: JSM23U19; 13.98-16	
PA / PA / PA	PA / PA / PA	CuZn nickel-plated / PBT / GF	
CuZn nickel-plated	CuZn	CuZn nickel-plated	
CuZn gold-plated	CuZn	CuZn gold-plated	
60 V (8-pol. 30 V); 4 A ((8-pol. 2 A); $\leq 5 \mathrm{~m} \Omega$	$250 \mathrm{~V} ; 5 \mathrm{~A} ; \leq 8 \mathrm{~m} \Omega$	240 V (19-pol. 120 V); $7.5 \mathrm{~A} ; \leq 5 \mathrm{~m} \Omega$	
0	0	0	
$3.0 \ldots 6.5 \mathrm{~mm}$	$3.0 \ldots 6.5 \mathrm{~mm}$	PG 13.5	
$5 / 8 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$4 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$12 / 19 \times 0.34 \mathrm{~mm}$ ^2	
IP 67	IP 65	IP 67	
$-25 \ldots+90^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+90^{\circ} \mathrm{C}$	
Lumberg RKC	Binder series 714	Lumberg RKC	Amphenol
${ }_{5}^{5}$ polies 8-polig 8 poles 3 20 0 0 0 3	lead box		
socket M12; screwable	socket M18; screwable	socket M23; solderable	
angled	angled	angled	
5-poles: JSM12V5; 13.98-11	4-poles: JSM18V4; 13.98-14	12-poles: JSM23V12; 13.98-17	
8-poles: JSM12V8; 13.98-12		19-poles: JSM23V19; 13.98-18	
PA	PBT / PA / PA	CuZn nickel-plated / PBT / GF	
CuZn nickel-plated	CuZn	CuZn nickel-plated	
CuSn gold-plated	CuZn	CuZn gold-plated	
60 V (8-pol. 30 V); 4 A ((8-pol. 2 A); $\leq 5 \mathrm{~m} \Omega$	$250 \mathrm{~V} ; 5 \mathrm{~A} ; \leq 8 \mathrm{~m} \Omega$	240 V (19-pol. 120 V); $7.5 \mathrm{~A} ; \leq 5 \mathrm{~m} \Omega$	
0	0	0	
3.0 ... 6.5 mm (8-pol. 4.0 ... 8.0 mm)	$3.0 \ldots 6.5 \mathrm{~mm}$	PG 13.5	
$5 / 8 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$4 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$12 / 19 \times 0.34 \mathrm{~mm}^{\wedge} 2$	
IP 67	IP 65	IP 67	
$-25 \ldots+90^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+90^{\circ} \mathrm{C}$	
Lumberg RKCW	Binder series 714	Lumberg RKCW	
	lead socket		

Accessories for Sensors
Field Attachable Plugs and Adaptors

12.1.2.3 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn•Fon +49 7234790 • Fax +49 723479112 • info@klaschka.de • www.klaschka.de

plug M12; screwable
angled
5-poles: JSM12T5; 13.98-40
8-poles: JSM12T8; 13.98-41
PA / PA / PA
CuZn nickel-plated
CuZn (8-pol. CuSnZn) gold-plated
60 V (8-pol. 30 V); 4 A (8-pol. 2 A); $\leq 5 \mathrm{~m} \Omega$
0
3.0 ... 6.5 mm (8-pol. 4.0 ... 8.0 mm)
$5 / 8 \times 0.34 \mathrm{~mm} \wedge 2$
IP 67
$-25 \ldots+90^{\circ} \mathrm{C}$
Lumberg RSCW

Accessories for Sensors PVC - Leads Unshielded

KLASCHKA
Elektronik + Automation

			Material of the lead jacket	PVC	PVC radiation cross-linked
			Type designation; ref. no.	JLN3x0.14u3.5BK; 13.98-70-xxxN	JLH3x0.14u3.5BK; 13.98-75-xxxH
			Jacket colour	BK	BK
			Jacket diameter	3.5 mm	3.5 mm
			Number of lines x cross section	$3 \times 0.14 \mathrm{~mm}^{\wedge} 2$	$3 \times 0.14 \mathrm{~mm}^{\wedge} 2$
			Shield	unshielded	unshielded
			Line colours	BN, BK, BU	BN, BK, BU
			Type designation; ref. no.	JLN3x0.34u5.00G; 13.98-71-xxxN	JLH3x0.34u5.00G; 13.98-76-xxxH
			Jacket colour	OG	OG
			Jacket diameter	5.0 mm	5.0 mm
			Number of lines x cross section	$3 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$3 \times 0.34 \mathrm{~mm}^{\wedge} 2$
			Shield	unshielded	unshielded
			Line colours	BN, BK, BU	BN, BK, BU
			Type designation; ref. no.	JLN4x0.34u5.20G; 13.98-72-xxxN	JLH4x0.34u5.2OG; 13.98-77-xxxH
			Jacket colour	OG	OG
			Jacket diameter	5.2 mm	5.2 mm
			Number of lines x cross section	$4 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$4 \times 0.34 \mathrm{~mm}^{\wedge} 2$
			Shield	unshielded	unshielded
			Line colours	BN, BK, WH, BU	BN, BK, WH, BU
			Type designation; ref. no.	JLN5x0.34u5.70G; 13.98-73-xxxN	JLH5x0.34u5.7OG; 13.98-78-xxxH
			Jacket colour	OG	OG
			Jacket diameter	5.7 mm	5.7 mm
			Number of lines x cross section	$5 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$5 \times 0.34 \mathrm{~mm}^{\wedge} 2$
			Shield	unshielded	unshielded
			Line colour	BN, WH, BU, BK, GY	BN, WH, BU, BK, GY
			Type designation; ref. no.	JLN8x0.34u9.5BK; 13.98-74-xxxN	JLH8x0.34u9.5BK; 13.98-79-xxxH
			Jacket colour	BK	BK
			Jacket diameter	9.5 mm	9.5 mm
			Number of lines x cross section	$8 \times 0.34 \mathrm{~mm}^{\wedge} 2$	$8 \times 0.34 \mathrm{~mm}^{\wedge} 2$
			Shield	unshielded	unshielded
			Line colours	WH, GN, YE, GY, PK, RD, BK, VT	WH, GN, YE, GY, PK, RD, BK, VT
			Type designation; ref. no.		
			Jacket colour		
			Jacket diameter		
			Number of lines x cross section		
			Shield		
			Line colours		
Lead- and Line Colours according to DIN IEC 60757			Type designation; ref. no.		
			Jacket colour		
			Jacket diameter		
			Number of lines x cross section		
Colour	Abbrev.	DIN	Shield		
black	sw	BK	Line colours		
brown	br	BN			
red	rt	RD			
orange	or	OG	Type designation; ref. no.		
yellow	ge	YE	Jacket colour		
green	gn	GN	Jacket diameter		
blue	bl	BU	Number of lines x cross section		
violet	vi	VT	Shield		
grey	gr	GY	Line colours		
white	ws	WH			
pink	rs	PK			
turquoise	tk	TQ	Type designation; ref. no.		
transparent	tp	TR	Jacket colour		
			Jacket diameter		
			Number of lines x cross section		
			Shield		
			Line colours		

12.1.3.1 © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn•Fon +497234790•Fax +49723479112•info@klaschka.de •www.klaschka.de

Accessories for Sensors PUR - Leads Unshielded

KLASCHKA
Elektronik + Automation

Accessories for Sensors

Cordsets with M8- or M12-Connectors

12.1.4.1

Accessories for Sensors

2 Sockets with Lead

Connection type (screws or snap-ins)
Material: Housing / moulded body / contact carrier
Flange and surface / contact material and surface
Nominal voltage
Degree of protection according to IEC 60529 (in locked position)
Ambient temperature range
Number sockets x pole no. socket / no. of lines x cross section
Type designation
Ref. no.

This double socket with outgoing lead has standard lead lengths of $2 \mathrm{~m}, 5 \mathrm{~m}$ and 10 m . The lead lengths in 0.1 m are marked in the ref. no.by the 3 -digit index xxx:

Standard lead lengths	2.0 m	-020
	5.0 m	-050
	10.0 m	-100
	20.6 m	-206

In case of deviating lead lengths please indicate this in the ref. no. when placing the order.

12.1.5.1

Accessories for Sensors T-Connectors

Accessories for 2 Sensors

Cordsets with 2 Sockets and 1 Plug

Accessories for Sensors

Distributors

Number of ports / signals per port / pole number per port	8/1/4
Version	8 sockets M12, lead
Locking type of connectors (screw or snap-ins)	plugs: screw
Type of lead connection	terminals
Material housing / moulded body	stainless steel
Material of the contact carrier	PVC
Contact material and surface	CuZn gold-plated
Material screw socket / knurled screw and -nut / sleeve	stainless steel
O-ring	EPDM
Lead: Number of lines x cross section	$3 \times 0.75 \mathrm{~mm}^{\wedge} 2$ und $8 \times 0.34 \mathrm{~mm}$ ^2
Nominal voltage	10 ... 30 V DC
Nominal current at $40^{\circ} \mathrm{C}$	4 A per port / 12 A max . in total
LED indicator in the angled distributor housing	$1 \times \mathrm{GN}$ (operation), $8 \times \mathrm{YE}$ (signal)
Lead jacket / colour	PVC / BK
Standard lead lengths	$5 \mathrm{~m}, 10 \mathrm{~m}$ or 15 m
Other lead lengths	on request
Protection type according to IEC 60529 (in locked position)	IP 67 / IP 69 K
Ambient temperature range	$-25 \ldots+70^{\circ} \mathrm{C}$
Accessories	4 PVC protective covers
Manufacture	Lumberg ASNBL 8/LED
Number of sockets x type of socket / type of connection	$8 \times \mathrm{M} 12$ / outgoing lead
Type designation	JS8xM12G4 / LN8x0.34u9.5BK
Ref. no.	13.99-80-xxx
Number of sockets x type of socket / type of connection	
Type designation	
Ref. no.	

12.1.7.1

[^0]: © by Klaschka GmbH \& Co. KG • D-75233 Tiefenbronn • Fon +49 7234790 • Fax +49 723479112 • info@klaschka.de • www.klaschka.de

[^1]: *) $b=$ flush mounting, $n=$ non-flush mounting, $m=$ maximized; flush mounting

